Open Postdoctoral Position in Mesoscale Modeling in Nanostructured Materials


In the context of the EU H2020 project E-CAM we are seeking a highly qualified post-doctoral researcher for an exciting collaborative project on the fundamental challenges of  driven transport in complex media. 

Increasingly, modern technology is addressing problems where fluid transport takes place in submicron sized channels, or in pores. The physical laws of transport in such channels are qualitatively different from those that determine bulk flow; they are poorly understood and, importantly, barely exploited. 

The postdoctoral position will  address complementary aspects related to the fundamental challenges of thermodynamic driving on systems of potential industrial interest. In this respect, the  project will be developed in close contact with an industrial partner. 

The project will involve both algorithmic and scientific developments. The candidate will benefit from existing in-house expertise in lattice Boltzmann methods for non-equilibrium soft materials and will contribute to its extension and use on complex materials out of equilibrium. The project will go  beyond the state-of-the-art macroscopic descriptions of phoresis to capture the effects of solute and surface specificity, solute flexibility, surface wettability and heterogeneity, fluctuations and correlations.

We seek motivated researchers, with theoretical and computational expertise. Candidates should have a background in computer simulation, statistical mechanics, biophysics and/or soft condensed matter.

The project will be carried out at the University of Barcelona, under the supervision of Prof. Ignacio Pagonabarraga, for an initial period of 20 months. Candidates with an appropriate background, who are interested in a cutting-edge research at the interface between physics and the biological sciences, are invited to apply.

We look forward to receiving a CV and 1 referee letter. You can address these  documents, or any additional information you require, to Prof. I. Pagonabarraga by email ipagonabarraga@ub.edu. Review of applications will continue until the position is filled.

Share

Porting of electrostatics to the GPU version of DL_MESO_DPD


The porting of DL_MESO_DPD [1,2] to graphic cards (GPUs) was reported in deliverable D4.2 of E-CAM[3] (for a single GPU) and deliverable D4.3 [4] (for multiple GPUs) (Figure 1), and has now been extended to include electrostatics, with two alternative schemes as explained below. This work was recently reported on deliverable D4.4[5].

Figure 1: DL_MESO strong scaling results on PizDaint, obtained using 1.8 billion particles for 256 to 2048 GPUs. Results show very good scaling, with efficiency always above 89% for 2048 GPUs.


To allow Dissipative Particle Dynamics (DPD) methods to treat systems with electrically charged particles, several approaches have been proposed in the literature, mostly based on the Ewald summation method [6]. The DL_MESO_DPD  code includes Standard Ewald and Smooth Particle Mesh Ewald (SPME) methods (in version 2.7, released in December 2018). Accordingly, here the same methods are implemented for the single-GPU version of the code. Continue reading…

Share

9 software modules recently delivered in the area of Meso and Multi-scale Modelling

In this report for Deliverable 4.4 [1]  of E-CAM, nine software modules in meso– and multi–scale modelling are presented. Four of the modules have been implemented in DL_MESO_DPD:

• Ewald method for the GPU version of DL_MESO_DPD

• Smooth Particle Mesh Ewald (SPME) method for the GPU version of DL_MESO_DPD

• Analysis of local tetrahedral ordering for DL_MESO_DPD[2]

• Consistency check of input files in DL_MESO_DPD[2]

Five of the modules concern the Grand Canonical Adaptive Resolution Scheme (GC-AdResS) and have been developed, implemented and tested in/with GROMACS 5.1.0 and GROMACS 5.1.5 [3]. The patches provided are for GROMACS 5.1.5. The modules provide a recipe to simplify the implementation and to allow to look into a microcanonical (i.e., NVE-like) environment. They are based on the same principles as the Abrupt AdResS modules reported in a previous deliverable D4.3[4].

Furthermore, we provide all the tools necessary to run and check the AdResS simulations. The modules are:

• Local Thermostat Abrupt AdResS

• Thermodynamic Force Calculator for Abrupt AdResS

• Energy (AT)/Energy(interface) ratio: Necessary condition for AdResS simulations

• Velocity-Velocity autocorrelation function for AdResS

• AdResS-Radial Distribution Function (RDF).

A short description is written for each module, followed by a link to the respective Merge-Request on the GitLab service of E-CAM. These merge requests contain detailed information about the code development, testing and documentation of the modules.

Full report available here.

[1] S. Chiacchiera, J. Castagna, and C. Krekeler, “Meso– and multi–scale modelling E-CAM modules III,” Jan. 2019. [Online]. Available: https://doi.org/10.5281/zenodo.2555012

[2] This work is part of an E-CAM pilot project focused on the development of Polarizable Mesoscale Models

[3] This work is part of an E-CAM pilot project focused on the development of the GC-AdResS scheme

[4] B. Duenweg, J. Castagna, S. Chiacchiera, H. Kobayashi, and C. Krekeler, “Meso– and multi–scale modelling E-CAM modules II,” Mar. 2018. [Online]. Available: https://doi.org/10.5281/zenodo.1210075

Share

Extended Software Development Workshop: Meso and multiscale modeling

If you are interested in attending this workshop, please visit the CECAM website bellow.

Share

Extended Software Development Workshop: Meso and multiscale modeling

If you are interested in attending this workshop, please visit the CECAM website below.

Share

State of the Art Workshop: Meso and Multiscale Modelling

If you are interested in attending this workshop, please visit the CECAM website bellow.

Share