Issue 15 – December 2020

E-CAM Newsletter of December 2020


Get the latest news from E-CAM, sign up for our  newsletter.


Proof of concept : Metamorphosis



The transformation of a beautiful idea born via simulation into a commercial opportunity is described as it progresses from proof of concept towards a product. At the heart of this ongoing story is advanced simulation using massively parallel computation and rare-event methods.

Continue reading…

LearnHPC: dynamic creation of HPC infrastructure for educational purposes



In a newly successful PRACE-ICEI proposal, E-CAM, FocusCoE, HPC Carpentry and EESSI join forces to bring HPC resources to the classroom in a simple, secure and scalable way. Our plan is to reproduce the model developed by the Canadian open-source software project Magic Castle. The proposed solution creates virtual HPC infrastructure(s) in a public cloud, in this case on the Fenix Research Infrastructure, and generates temporary event-specific HPC clusters for training purposes, including a complete scientific software stack. The scientific software stack is fully optimised for the available hardware and will be provided by the European Environment for Scientific Software Installations (EESSI). 


EU-wide requirements for HPC training are exploding as the adoption of HPC in the wider scientific community gathers pace. However, the number of topics that can be thoroughly addressed without providing access to actual HPC resources is very limited, even at the introductory level. In cases where such access is available, security concerns and the overhead of the process of provisioning accounts make the scalability of this approach questionable.

EU-wide access to HPC resources on the scale required to meet the training needs of all countries is an objective that we attempt to address with this project. The proposed solution essentially provisions virtual HPC system(s) in a public cloud, in this case on the Fenix Research Infrastructure. The infrastructure will dynamically create temporary event-specific HPC clusters for training purposes, including a scientific software stack. The scientific software stack will be provided by the European Environment for Scientific Software Installations (EESSI) which uses a software distribution system developed at CERN, CernVM-FS, and makes a research-grade scalable software stack available for a wide set of HPC systems, as well as servers, desktops and laptops (including MacOS and Windows!). 

The concept is built upon the solution of Compute Canada, Magic Castle, which aims to recreate the Compute Canada user experience in public clouds (there is even a presentation where the main developer creates a cluster just by talking to his phone!). Magic Castle uses the open-source software Terraform and HashiCorp Language (HCL) to define the virtual machines, volumes, and networks that are required to replicate a virtual HPC infrastructure. 

In addition to providing a dynamically provisioned HPC resource, the project will also offer a scientific software stack provided by EESSI. This model is also based on a Compute Canada approach and enables replication of the EESSI software environment outside of any directly related physical infrastructure. 

Our adaption of Magic Castle aims to recreate the EESSI HPC user experience, for training purposes, on the Fenix Research Infrastructure.  After deployment, the user is provided with a complete HPC cluster software environment including a Slurm scheduler, a Globus Endpoint, JupyterHub, LDAP, DNS, and a wide selection of research software applications compiled by experts with EasyBuild.

The architecture of the solution is best represented by the graphic below (taken from the Compute Canada documentation at

Cloud Cluster Architecture Overview ©Magic Castle (

With the resources made available to the project, we plan to run 6 HPC training events from January to July 2021. These training events are connected to the Centres of Excellence E-CAM and FocusCoE and with HPC Carpentry.


Comics & Science ? The E-CAM issue: an experiment in dissemination


The E-CAM issue of Comics & Science has just been released on-line…and it’s just the beginning of the adventure!

Identifying exciting and original tools to engage the general public with advanced research is an intriguing and non-trivial challenge for the scientific community. E-CAM decided to try something unusual, and embarked on an interesting and slightly bizarre experience: collaborating with experts and artists to use comics to talk about HPC and simulation and modelling!

The adventure started when CECAM Deputy Director and E-CAM Work-Package leader Sara Bonella visited the CNR Institute for applied mathematics “Mauro Picone” (Cnr-Iac), in Rome, and became acquainted with the work of Comics&Science, a magazine published by CNR Edizioni to promote the relationship between science and entertainment. The magazine was created in 2013 by Roberto Natalini, Director of the Cnr-Iac, and Andrea Plazzi, author and editor with a scientific background and active in the field of comics.

Adopting the unique language of the comics, Comics&Science communicates science in a funny and understandable way via original stories that are always edited by some of the best authors and cartoonists in town. For the E-CAM issue, we had the good fortune to collaborate with Giovanni Eccher, comics writer and scriptwriter for movies and animations, and Sergio Ponchione, illustrator and cartoonist.

Giovanni and Sergio created for us the unique story of Ekham the wise, a magnificent witch  that – with an accurate model and the help of a High Performance Cauldron (!) – enables Prince Variant to defeat the fearful Dragon that has kidnapped Princess Beauty. As usual, the King had promised the Princess’s hand to the vanquisher of the dragon, but things don’t turn out exactly as expected…

In addition to the comics, the E-CAM issue of Comics&Science  presents several articles  describing – in a language targeted at young adults, and, in general, lay public – what are simulations in advanced research and the role of High Performance Computing. The issue also contains a statement from the European Commission on its vision for HPC. We are very grateful to our authors, that include Ignacio Pagonabarraga, Catarina Mendonça, Sara Bonella, Christoph Dellago, and Gerhard Sutmann, for playing with us.

The issue has been produced in partnership with CECAM, coordinator of E-CAM, and the longest standing institution promoting fundamental research on advanced computational methods.

The E-CAM issue of Comics&Science is freely available on our website at Should you wish to use this new toy to promote modelling and simulation, get in touch at and let us know about your plans: we are happy to share the material provided that provenance is acknowledged.

The “first outing” of the E-CAM issue of Comics&Science took place on Friday 30 October at 14:15 CET with a presentation (in Italian) in the on-line programme of the 2020 Lucca Comics&Games Festival. A recording of that moment is available at

Enjoy the read and, most importantly, have fun 🙂


E-CAM article on the EU Research Magazine


An article about E-CAM has just been released with the Autumn edition of the EU Research Magazine. The EU research magazine is Europe’s leader in research dissemination.

The piece consists on an interview to Prof. Ignacio Pagonabarraga, E-CAM technical manager, Dr. Sara Bonella, leader of our work-package focused on quantum dynamics and also of the work-package that deals with the interactions with industry; Dr. Donal Mackernan, leader of our dissemination work-package and Dr. Jony Castagna, programmer in E-CAM.

The interview describes E-CAM’s work in

(1) developing software targeted at the needs of both academic and industrial end-users, with applications from drug development to the design of new materials ;

(2) tuning those codes to run on HPC machines, through application co-design and the provision of HPC oriented libraries and services;

(3) training scientists from industry and academia ; and

(4) supporting industrial end-users in their use of simulation and modelling, via workshops and direct discussions with experts in the CECAM community.

Autumns edition of the EU Research Magazine is available online at Our article can be seen here.


Issue 14 – September 2020

E-CAM Newsletter of September 2020


Get the latest news from E-CAM, sign up for our  newsletter.


E-CAM Industrial Case Study: Calculations for Applications in Photovoltaic Devices

Dr. David Lopez, Universidad de Córdoba, Spain


The need to find easily renewable and environmentally friendly energy sources alternative to the traditional fossil fuels is nowadays a global quest. The solar energy is a promising candidate and organic solar cells (OSCs) have attracted attention. In this collaboration with Merck, E-CAM scientists have used electronic structure calculations to study how a key magnitude – the HOMO-LUMO band gap – changes with respect to the molecular disposition of the donor-acceptor molecule pair.

Continue reading…

Addressing interactive HTC workloads with HPC characteristics: introduction to E-CAM’s HTC library



Traditionally high-throughput computing (HTC) workloads are looked down upon in the HPC space, however the scientific use case for extreme-scale resources required by coordinated HTC workflows exists. For such cases where there may be thousands of tasks each requiring peta-scale computing, E-CAM has extended the data-analytics framework Dask with a capable and efficient library to handle such workloads.



The initial motivation for E-CAM’s High Throughput Library, jobqueue_features library [1], is driven by the ensemble-type calculations that are required in many scientific fields, and in particular in the materials science domain. A concrete example is the study of molecular dynamics with atomistic detail, where timesteps must be used on the order of a femto-second. Many problems in biological chemistry and materials science involve events that only spontaneously occur after a millisecond or longer (for example, biomolecular conformational changes). That means that around 1012 time steps would be needed to see a single millisecond-scale event. This is the problem of “rare events” in theoretical and computational chemistry.

Modern supercomputers are beginning to make it possible to obtain trajectories long enough to observe some of these processes, but to fully characterize a transition with proper statistics, many examples are needed. In such cases the same peta-scale application must be run many thousands of times with varying inputs. For this use case, we were conceptually attracted to the Dask philosophy [2]: Dask is a specification that encodes task schedules with minimal incidental complexity using terms common to all Python projects, namely dicts, tuples, and callables.

However, Dask or it’s extensions do not currently support task-level parallelization (in particular multi-node tasks). We have been able to leverage the Dask extension dask_jobqueue [3] and build upon it’s functionality to include support for MPI-enabled task workloads on HPC systems. The resulting approach, described in the rest of this piece, allows for multi-level parallelization (at the task level via MPI, and at the framework level via Dask) while leveraging all of the pre-existing effort within the Dask framework such as scheduling, resilience, data management and resource scaling.

E-CAM’s HTC library was created in collaboration with a PRACE team in Wrocław, and is the subject of an associated white paper [4]. This effort is under continuous improvement and development. A series of dedicated webinars will happen in the fall of 2020, which will be an opportunity for people to learn how to use Dask and dask_jobqueue (to submit Dask workloads on a resource scheduler like SLURM), and to implement our library jobqueue_features in their codes. Announcement and more information will soon be available at



The jobqueue features library [1] is an extension of dask_jobqueue [3] which in turn utilizes the Dask [2] data analytics framework. dask_jobqueue is targeted at deploying Dask on several job queuing systems, such as SLURM or PBS with the use of a Python programming interface. The main enhancements of basic dask_jobqueue functionality is heavily extending the configuration implementation to handle MPI runtimes and different resource specifications. This allows the end-user to conveniently create parallelized tasks without extensive knowledge of the implementation details (e.g., the resource manager or MPI runtime). The library is primarily accessed through a set of Python decorators: on_cluster, task and mpi_task. The on_cluster decorator gets or creates clusters, which in turn submit worker resource allocation requests to the scheduler to execute tasks. The mpi_task decorator derives from task and enhances it with MPI specific settings (e.g. the MPI runtime and related settings).

Fig. 1: Example of decorator usage to parallelize computation

In Fig. 1 we show a minimal, but complete, example which uses the mpi_task and on_cluster decorators for a LAMMPS execution. The configuration, communication and serialization is isolated and hidden from user code.

Any call to my_lammps_job results in the lammps_task function being executed remotely by a lammps_cluster worker allocated by the resource manager with 2 nodes and 12 MPI tasks per node. The code can be executed interactively in a Jupyter notebook. To overlap calculations one would need to return the t1 future rather than the actual result.



The library can effectively handle simultaneous workloads on GPU, KNL and CPU partitions of the JURECA supercomputer [5]. The caveat with respect to the hardware environment is that you need to be able to have a network that supports TCP (usually via IPoIB) or UCX connections between the scheduler and the workers (which process and execute the tasks that are queued).

With respect to the software stack, this is an issue highlighted by the KNL booster of JURECA. On the booster, there is a different micro-architecture and it is required to completely change your software stack to support this. The design of the software stack implementation on JURECA simplifies this but ensuring your tasks are run in the correct software environment is one of the more difficult things to get right in the library. As a result, the configuration of the clusters (which define the template required to submit workers to the appropriate queue of the resource manager) can be quite non-trivial. However, they can be located within a single file which will need to be tuned for the available resources. With respect to the tasks themselves, no tuning is necessarily required.

We see ∼90% throughput efficiency for trivial tasks, if the tasks executed for any reasonable length of time this throughout efficiency would be much higher.



The library is flexible, scalable, efficient and adaptive. It is capable of simultaneously utilising CPUs, KNL and GPUs (or any other hardware) and dynamically adjusting its use of these resources based on the resource requirements of the scheduled task workload. The ultimate scalability and hardware capabilities of the solution is dictated by the characteristics of the tasks themselves with respect to these. For example, for the use case described here these would mean the hardware and scalability capabilities of LAMMMPS with a further multiplicative factor coming from the library for the number of tasks running simultaneously. There is, unsurprisingly, room for further improvement and development, in particular related to error handling and limitations related to the Python GIL.



[1] jobqueue features repository,

[2] Dask documentation,

[3] Dask-Jobqueue documentation,

[4] A. O. Cais, D. Swenson, M. Uchronski and A. Wlodarczyk. (2019, Augoust 14). “Task Scheduling Library for Optimising Time-Scale Molecular Dynamics Simulations,” Zenodo.

[5] Krause, D. and Thörnig, P.: JURECA: Modular supercomputer at Jülich Supercomputing Centre,  (2016)


Accelerating the design and discovery of materials with tailored properties using first principles high-throughput calculations and automated generation of Wannier functions


A successful collaboration between the EU H2020 E-CAM and MaX Centres of Excellence, and the Swiss NCCR MARVEL


In a recent paper[1], researchers from the Centres of Excellence E-CAM[2] and MaX[3], and the centre for Computational Design and Discovery of Novel Materials NCCR MARVEL[4], have proposed a new procedure for automatically generating Maximally-Localised Wannier functions (MLWFs) for high-throughput frameworks. The methodology and associated software  can be used for hitherto difficult cases of entangled bands, and allows the  electronic properties of a wide variety of materials to be obtained starting only from the specification of the initial crystal structure, including insulators, semiconductors and metals. Industrial applications that this work will facilitate include the development of novel superconductors, multiferroics, topological insulators, as well as more traditional electronic applications.

Graphical representation of all data and calculations run in the project and their interconnections (provenance), as tracked automatically by AiiDA in the form of a directed acyclic graph (image credits: G. Pizzi)


Predicting the properties of complex materials generally entails the use of methods that facilitate coarse grained perspectives more suitable for large scale modelling, and  ultimately device design and manufacture. When a quantum level of description of a modular-like system  is required, this can often be facilitated by expressing the Hamiltonian in terms of a localised, real-space basis set, enabling it to be partitioned without ambiguity into sub-matrices that correspond to the individual subsystems. Maximally-localised Wannier functions  (MLWFs) are particularly suitable in this context. However, until now generating MLWFs has been difficult to exploit  in high-throughput design of materials, without  the specification by users of a set of initial guesses for the MLWFs,  typically trial functions localised in real space, based on their experience and chemical intuition. 


E-CAM[2] scientist Valerio Vitale and co-authors from the partner H2020 Centre of Excellence  MAX[3] and the Swiss based NCCR MARVEL [4] in a recent article[1] look afresh at this problem in the context of an algorithm by Damle et al[5], known as the selected columns of the density matrix (SCDM) method, as a method to provide automatically initial guesses for the MLWF search, to compute a set of localized orbitals associated with the Kohn–Sham subspace for insulating systems. This has shown great promise in avoiding the need for user intervention in obtaining MLWFs and is robust, being based on standard linear-algebra routines rather than on iterative minimisation. In particular, Vitale et al. developed a fully-automated protocol based on the SCDM algorithm in which the three remaining free parameters (two from the SCDM method, plus the choice of the target dimensionality for the disentangled subspace) are determined automatically, making it thus parameter-free even in the case of entangled bands. The work systematically compares the accuracy and ease of use of standard methods to generate localised basis sets  as (a) MLWFs; (b)  MLWFs combined with SCDM’s and (c) using solely SCDM’s;  and applies this multifaceted perspective to hundreds of materials including insulators, semiconductors and metals.

Comparison between Wannier-interpolated valence bands (red lines) and the full direct-DFT band structure (black lines), for 150 different materials. The direct and interpolated band structures are essentially indistinguishable (image credits: G. Pizzi)


This is significant because it greatly expands the scope of materials for which MLWFs can be generated in high throughput studies and has the potential to accelerate the design and discovery of materials with tailored properties using first-principles high-throughput (HT) calculations, and facilitate advanced industrial applications. Industrial applications that this work will facilitate include the development of novel superconductors, multiferroics, topological insulators, as well as more traditional electronic applications.

Background information

This module is a collaboration between the E-CAM and MaX HPC centres of excellence, and the NCCR MARVEL

In SCDM Wannier Functions, E-CAM has implemented the SCDM algorithm in the pw2wannier90 interface code between the Quantum ESPRESSO software and the Wannier90 code. This was done in the context of an E-CAM pilot project at the University of Cambridge. Researchers have then used this implementation as the basis for a complete computational workflow for obtaining MLWFs and electronic properties based on Wannier interpolation of the Brillouin zone, starting only from the specification of the initial crystal structure. The workflow was implemented within the AiiDA materials informatics platform (from the NCCR MARVEL and the MaX CoE) , and used to perform a HT study on a dataset of 200 materials.

Source Code

See the Materials Cloud Archive entry. A downloadable virtual machine is provided that allows to reproduce the results of the associated paper and also to run new calculations for different materials, including all first-principles and atomistic simulations and the computational workflows.


[1] Automated high-throughput Wannierisation, Valerio Vitale, Giovanni Pizzi, Antimo Marrazzo, Jonathan R. Yates, Nicola Marzari and Arash A. Mostofi, Nature Computational Materials (2020)6:66 ;




[5] Compressed Representation of Kohn−Sham Orbitals via Selected Columns of the Density Matrix , Anil Damle, Lin Lin,  and Lexing Ying, J. Chem. Theory Comput. 2015, 11, 1463−1469


Issue 13 – April 2020

E-CAM Newsletter of April 2020


Get the latest news from E-CAM, sign up for our  newsletter.