LibOMM : Orbital Minimization Method Library

1. Purpose

The library LibOMM solves the Kohn-Sham equation as a generalized eigenvalue problem for a fixed Hamiltonian. It implements the orbital minimization method (OMM), which works within a density matrix formalism. The basic strategy of the OMM is to find the set of Wannier functions (WFs) describing the occupied subspace by direct unconstrained minimization of an appropriately-constructed functional. The density matrix can then be calculated from the WFs. The solver is usually employed within an outer self-consistency (SCF) cycle. Therefore, the WFs resulting from one SCF iteration can be saved and then re-used as the initial guess for the next iteration.

This module is an effort from the Electronic Structure Library Project (ESL), and it was initiated during an E-CAM Extended Software Development Workshop in Zaragoza in June 2016. More information on the module’s documentation can be found here, and the source code is available from the E-CAM Gitlab here. The algorithms and implementation of the library are described in https://arxiv.org/abs/1312.1549v1.

2. Practical application and exploitation of the module

libOMM is one of the libraries supported and enhanced by the Electronic Structure Infrastructure ELSI [1], which in turn is interfaced with the DGDFT, FHI-aims, NWChem, and SIESTA codes.

[1] The electronic structure infrastructure ELSI  provides and enhances scalable, open-source software library solutions for electronic structure calculations in materials science, condensed matter physics, chemistry, molecular biochemistry, and many other fields [https://arxiv.org/abs/1705.11191v1].

Share