
E-CAM Software Development Tools
E-CAM Deliverable 6.2

Deliverable Type: Other
Delivered in Month 8– May 2016

E-CAM
The European Centre of Excellence for

Software, Training and Consultancy
in Simulation and Modelling

Funded by the European Union under grant agreement 676531

E-CAM Deliverable 6.2 Page ii

Project and Deliverable Information
Project Title E-CAM: An e-infrastructure for software, training and discussion in simulation

and modelling
Project Ref. Grant Agreement 676531

Project Website https://www.e-cam2020.eu
EC Project Officer Juan PELEGRIN

Deliverable ID D6.2
Deliverable Nature Other

Dissemination Level Public
Contractual Date of Delivery Project Month 8(May 2016)

Resubmission Date 04.09.2017
Description of Deliverable On-line deployment of centralized tools for software development, documen-

tation and maintenance. These will include tools for automatic extraction of
software documentation, bug tracking, version control, low-level software (e.g.
memory handling).

Document Control Information

Document

Title: E-CAM Software Development Tools
ID: D6.2
Version: As of September 4, 2017
Status: Accepted by Executive Board
Available at: https://www.e-cam2020.eu/deliverables
Document history: Internal Project Management Link

Review Review Status: Reviewed

Authorship

Written by: Alan Ó Cais(JSC)
Contributors: Dominic Tildesley (EPFL)
Reviewed by: Jony Castagna (STFC), Catarina Mendonça (EPFL)
Approved by: Catarina Mendonça (EPFL)

Document Keywords
Keywords: E-CAM, HPC, CECAM, Materials, ...

September 4, 2017
Disclaimer:This deliverable has been prepared by the responsible Work Package of the Project in accordance with the
Consortium Agreement and the Grant Agreement. It solely reflects the opinion of the parties to such agreements on a
collective basis in the context of the Project and to the extent foreseen in such agreements.

Copyright notices: This deliverable was co-ordinated by Alan Ó Cais1 (JSC) on behalf of the E-CAM consortium with
contributions from Dominic Tildesley (EPFL) . This work is licensed under the Creative Commons Attribution 4.0 Inter-
national License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0.

cb
1a.ocais@fz-juelich.de

https://www.e-cam2020.eu
https://www.e-cam2020.eu/deliverables
https://redmine.e-cam2020.eu/issues/1
http://creativecommons.org/licenses/by/4.0
mailto:a.ocais@fz-juelich.de

E-CAM Deliverable 6.2 Page iii

Contents

Executive Summary 1

1 Introduction 2
1.1 Target Groups . 2

2 Software Development Tools 3
2.1 Software Development . 3

2.1.1 Low-level Software . 4
2.1.2 Integrated Development Environment . 5

2.2 Software Documentation . 6
2.2.1 E-CAM Module Documentation . 6
2.2.2 Automated Extraction . 6

2.3 Software Maintenance . 7
2.3.1 Bug Tracking . 7

3 Workflow Support 8
3.1 The Recommended Workflow . 8
3.2 Automated Testing . 8

References 10

List of Figures

1 The GitLab service provided by E-CAM . 3
2 The GitHub organistion provided by E-CAM . 4
3 The Best Practices site on readthedocs.org . 6

http://scientific-software-best-practices.readthedocs.io/en/latest/
https://readthedocs.org/

E-CAM Deliverable 6.2 Page 1

Executive Summary

This deliverable describes the current status (as of the deliverable due date) of the on-line deployment of centralized
tools for software development, documentation and maintenance. These include tools for version control, bug track-
ing, build systems, documentation and other services. The services described here are not just for the E-CAM software
team but the E-CAM community as a whole and we will support users within that community to effectively utilise the
available tools.

This document is a companion to the services that E-CAM provides and focuses primarily on the E-CAM GitLab ser-
vice since it is this service that supports the specific features of software development, documentation and mainte-
nance. This service allows the project to offer a complete set of additional services:

• Version control

• Code review,

• GitLab Issue Tracker (used for bug tracking and maintenance as well as code review and feature requests),

• GitLab CI for continuous integration and delivery.

• Single sign-on for other E-CAM services via OAuth2

• Application website hosting (via GitLab Pages)

• GitLab repository wikis

Some useful low-level software is also highlighted, in particular the software modules developed in the first ESDW in
the context of the Electronic Structure Library. We also highlight EasyBuild to manage software dependencies, system
portability and the delivery of software to industrial partners. Further collaborative development projects between
the various WPs of E-CAM with respect to low-level libraries are also in the early stages of development (as of the time
of delivery, May 2016).

https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/
https://about.gitlab.com/2017/03/17/demo-mastering-code-review-with-gitlab/
https://docs.gitlab.com/ee/user/project/issues/
https://about.gitlab.com/features/gitlab-ci-cd/
https://docs.gitlab.com/ce/api/oauth2.html
https://docs.gitlab.com/ee/user/project/pages/index.html
https://docs.gitlab.com/ce/user/project/wiki/index.html
http://esl.cecam.org/Main_Page
http://easybuild.readthedocs.io/en/latest/

E-CAM Deliverable 6.2 Page 2

1 Introduction

One of main intended outcomes of the E-CAM project is the on-line deployment of centralized tools for software de-
velopment, documentation and maintenance. This deliverable provides a basic description of the tools and workflow
advice that E-CAM has made available to developers.

This document is a companion to the services that E-CAM provides and focuses primarily on the E-CAM GitLab ser-
vice since it is this service that supports the specific features of software development, documentation and mainte-
nance.

The project has purchased a high-end server with 1TB RAID and remote back-ups to host services where required and
to support development workflows.

1.1 Target Groups

The on-line services E-CAM provides are in place to facilitate the implementation of best practices as defined in
Deliverable 6.1 of WP6 of E-CAM. In practice, this means facilitating version control; code review; test-driven design;
source code and application documentation; and cross-platform portability.

While the services are specifically put in place in order for the project to achieve it’s internal goals, they are open to all
users from the extended E-CAM community. More specifically, the target groups for the tools and work-flow described
in this deliverable are:

• post-docs working in our pilot projects;

• post-docs and students participating to our Extended Software Development Workshop (ESDW) events;

• senior scientists involved in E-CAM;

• senior scientists belonging to other communities related to E-CAM (eg. the CECAM community1);

• scientists working in industry, which are members of E-CAM.

The services described here are not just for the E-CAM software team but the E-CAM community as a whole and we
will support users within that community to effectively utilise the available tools.

1For example, several software development projects from the Electronic Structure Library community ESL are stored in a GitLab repository
hosted by E-CAM.

https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/
https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
http://esl.cecam.org/Main_Page

E-CAM Deliverable 6.2 Page 3

2 Software Development Tools

The on-line resources provided for the use of the E-CAM community are intended to satisfy the typical requirements
of software development using best practices taken from existing open source projects (of similar scale). The services
provided are intended to facilitate and simplify (as much as possible) the development, documentation and manage-
ment of software applications created by the E-CAM community, including the project itself.

2.1 Software Development

Software tools for revision control are essential for the organization of multi-developer projects. Version control within
projects connected to E-CAM is recommended to be done via Git, a standard utility available on Linux distributions.
Git is not necessarily superior to other options but is chosen because of the eco-system surrounding the tool, mostly
due to the use of the tool for the LINUX kernel and the success of hosting platforms such as GitHub and GitLab.

Figure 1: The GitLab service provided by E-CAM

In the case of the E-CAM community development projects, the hosting of project repositories is primarily done via
the E-CAM GitLab service, see Fig.1. Hosting via GitHub is also possible (GitHub is a well known repository hosting
service which is free to use for public open-source projects) via the E-CAM organisation there, though E-CAM provides
no additional services through GitHub. The GitHub E-CAM organisation site is shown in Fig.2.

The E-CAM GitLab service is the preferred hosting method as this allows the project to offer a complete set of addi-
tional services:

• Code review,

• GitLab Issue Tracker (used for bug tracking and maintenance as well as code review and feature requests),

• GitLab CI for continuous integration and delivery.

• Single sign-on for other E-CAM services via OAuth2

• Application website hosting (via GitLab Pages)

• GitLab repository wikis

In addition, hosting our own GitLab service provides E-CAM with the capability of having unlimited private reposito-
ries for the E-CAM community. This is a necessary addition as repositories of some potential use cases may require
this protection due to licence limitations on the source code (or similar restrictions).

Public repositories can be mirrored between GitLab and GitHub, providing an implicit back-up facility and leaving
the repository owners free to chose which platform to prefer for management, distribution and issue tracking. A list
of existing hosted repositories of E-CAM are available at https://gitlab.e-cam2020.eu/explore/projects.

https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/
https://about.gitlab.com/2017/03/17/demo-mastering-code-review-with-gitlab/
https://docs.gitlab.com/ee/user/project/issues/
https://about.gitlab.com/features/gitlab-ci-cd/
https://docs.gitlab.com/ce/api/oauth2.html
https://docs.gitlab.com/ee/user/project/pages/index.html
https://docs.gitlab.com/ce/user/project/wiki/index.html
https://gitlab.e-cam2020.eu/explore/projects

E-CAM Deliverable 6.2 Page 4

Figure 2: The GitHub organistion provided by E-CAM

2.1.1 Low-level Software

We outline here the contributions of E-CAM to providing scalable software libraries that can be leveraged by a large
fraction of the E-CAM target communities. The libraries mentioned are intended to be leveraged during the develop-
ment process of new applications that span most of the electronic structure community, but the main focus are codes
that implement Density Functional Theory, which can be used to determine a wide range of properties of atoms,
molecules, and materials.

In addition we highlight applications (supported by E-CAM) that facilitate the portability and optimisation of appli-
cations developed in this context.

For developers considering accelerators, we suggest that they be exposed, in an ESDW context, to other developers
who have already gone down this path. One of our programmers is a GPU expert and for the KNL architecture vec-
torisation is key (combined with OpenMP and MPI for inter-node communication). These architectures are currently
the most commonly found accelerators.

Electronic Structure Library
From a software perspective, the Electronic Structure community is the most well developed in the E-CAM target
communities with a significant number of mature community codes. The Electronic Structure Library is a project to
build a community-maintained library of software of use for electronic structure simulations (touching on the target
communities of three centres of excellence in E-CAM, MaX and NOMAD). The goal is to create an extended library
that can be employed by everyone for building their own packages and projects. It consists of entries documenting
functionalities, algorithms, interfaces, standards and pieces of code ranging from small routines for performing sim-
ple tasks, all the way up to complete libraries. Although wiki entries may document software maintained elsewhere,
the ESL also provides a software development infrastructure for internally developed projects. This infrastructure also
permits the regular building of automatic documentation, for both internal and external projects.

The ambition of the ESL is to segregate layers of functionality within modules which are general, standardised and
efficient. In this way, new ideas, and new science, can be coded by scientists without needing to rewrite functionalities
that are already well-established, and without needing to know more software engineering than science. In other
words, we want to separate the coding effort for cutting-edge research from the software infrastructure it rests on top
of, which needs maintaining and rewriting at every step of the hardware race.

ESL development is being carried out in a series of coding-based workshops which are being supported by E-CAM.
The first of such workshops was held in Spain in June 2016 centred on the development of new libraries revolving

http://esl.cecam.org/Main_Page
https://www.e-cam2020.eu/
http://www.max-centre.eu/
https://nomad-coe.eu/

E-CAM Deliverable 6.2 Page 5

around the broad theme of solvers. Work was carried out on three specific library bundles, all relating to crucial parts
of any density-functional theory code:

• Kohn-Sham eigensolvers: Development for the ESL is already underway in this area. New steps forward will
be taken through a new "Electronic Structure Infrastructure" project, in direct coordination with ESL and also
connecting U.S. based researchers to the wider ESL effort. ELSI brings together several different approaches to
solving or circumventing the Kohn-Sham eigenvalue problem, including a density matrix solver (libOMM), a
resolvent-based method (PEXSI), and a scalable diagonalization method (ELPA), and will be open to integrating
other open source solvers that are compatible and/or complementary.

• Poisson solvers: similarly to the eigensolvers, the aim is to implement, in a single package, several different
algorithms of use in different situations, providing a unified and clean interface for the user. Special attention
will go to allowing different FFT back ends to be connected to the library.

• Atomic solvers: this is one of the most notable examples of replicated development in different code bases,
with no modern independent library available. The aim is to create a new library with a modern, coherent
list of features, ultimately targeting spherical Hartree-Fock, semilocal and hybrid DFT, and different optional
relativistic levels of theory. It will also be connected to LibXC for immediate access to many different exchange-
correlation functionals (and, in doing so, will avoid replicated development).

Modules related to these developments were the subject of Deliverable 2.1 of WP2. Further development of these
libraries are targets of future ESDWs. It is expected that these modules will also be of use to the other WPs.

Portability and Optimisation

Development with extreme-scale targets is complex with debugging and performance analysis an essential part of
the workflow. There are many tools available to aid the code development process for HPC architectures. Their use
cannot be automated and must be used directly by the developer during the development process. For performance
analysis we direct you to the Virtual Institute for High-Productivity Supercomputing which covers many of these tools.
Specifically within the project, we can support Scalasca for performance optimisation. Other tools, such as debuggers,
we can advise on their use and support them as necessary.

Standards for interoperability of software written in different languages have been recommended in Deliverable 6.1
of WP6 of E-CAM with C recommended as an effective lingua franca. The online version of these Technical Guide-
lines (still under development at the time of submission) will include considered recommendations on optimised
mathematical libraries, interface design, I/O, performance analysis, etc. All of these greatly impact the achievable
performance and scalability of application codes.

EasyBuild is leveraged by E-CAM to ease portability issues between compilers, MPI implementations and math li-
brary functionalities. It can also encode build information for accelerators such as GPUs and many-core coprocessors
where the target platform supports this functionality. EasyBuild provides a dependency resolution layer for build pro-
cedures that can ensure reproducability of software installations. Finally, it also provides an effective software delivery
mechanism to our industrial partners.

2.1.2 Integrated Development Environment

The usage of an Integrated Development Environment (IDE) is strongly advised when developing large codes. In
particular, Eclipse is free software developed originally for JAVA applications, but since extended to C, C++, Python
and Fortran languages. Moreover, Eclipse is well integrated in a large ecosystem, with version control tools, editors
and tools for Parallel Performance Analysis and Debugger available on the Eclipse Marketplace.

In particular, the Eclipse Parallel Tools Platform (PTP) project provides an integrated development environment to
support the development of parallel applications written in C, C++, and Fortran. PTP provides support for the MPI,
OpenMP and UPC programming models, as well as OpenSHMEM and OpenACC. A wide range of batch systems and
runtime systems, including PBS/Torque, LoadLeveler, GridEngine, Parallel Environment, Open MPI, and MPICH2 can
be used to launch and remotely debug your applications.

Finally, an NVidia variation of Eclipse, the NSight Eclipse Edition is particularly useful for NVidia GPU programming
(both in CUDA and OpenACC languages) allowing a very flexible and powerful environment, especially when debug-
ging applications with thousand of threads.

https://wordpress.elsi-interchange.org/
https://www.e-cam2020.eu/wp-content/uploads/2017/01/D2.1_311016.pdf
http://www.vi-hps.org/
http://www.scalasca.org/
https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
http://easybuild.readthedocs.io/en/latest/
https://eclipse.org/ide/
https://marketplace.eclipse.org/
http://www.eclipse.org/ptp/
https://developer.nvidia.com/nsight-eclipse-edition

E-CAM Deliverable 6.2 Page 6

2.2 Software Documentation

A number of software source-code documentation tools are recommended (Doxygen for it’s cross-language availabil-
ity, Ford for Fortran, Sphinx for Python) however, given the diversity of software and development teams, no unique
solution is likely. With the provision of the online version of this documentation delivered via the GitLab Pages ser-
vice, E-CAM does need to commit to any single solution, instead providing a flexible documentation hosting environ-
ment.

2.2.1 E-CAM Module Documentation

Figure 3: The Best Practices site on readthedocs.org

E-CAM module documentation is done using ReStructured Text and online integration done via hooks into readthedocs.org,
a method that we also recommend to our target groups. For additional features and a more user-friendly end product,
we will support the use of Read the Docs (see Fig.3) via hooks into GitLab/GitHub. This will also allow for published
documentation to be version controlled and explicitly linked to published releases. The full feature list of Read the
Docs includes:

• Auto-updating

• Support of canonical URLs (gives better search performance, by pointing all URLs to one version)

• Versions

• PDF Generation

• Search

Use of these features can make documentation more relevant, appealing, accessible and ensure similar quality control
measures as code contributions.

Extensive guidelines for how to contribute to E-CAM module documentation are provided (for example, the contribution
guidelines to WP4)

2.2.2 Automated Extraction

GitLab Pages can be built automatically with each commit to the git repository. Examples of how to do this via the con-
tinuous integration feature of GitLab for many of these tools can be found on the GitLab repository https://gitlab.com/pages.

We encourage the overarching application documentation to be done using ReStructured Text where possible since
this can be automatically rendered by GitLab/GitHub.

http://www.stack.nl/~dimitri/doxygen/
http://fortranwiki.org/fortran/show/FORD
http://www.sphinx-doc.org/en/stable/
https://docs.gitlab.com/ee/user/project/pages/index.html
http://scientific-software-best-practices.readthedocs.io/en/latest/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
http://e-cam-meso-and-multi-scale-modelling-modules.readthedocs.io/en/latest/contributing.html
http://e-cam-meso-and-multi-scale-modelling-modules.readthedocs.io/en/latest/contributing.html
https://docs.gitlab.com/ee/user/project/pages/index.html
https://gitlab.com/pages
http://docutils.sourceforge.net/rst.html

E-CAM Deliverable 6.2 Page 7

2.3 Software Maintenance

The GitLab Issue Tracker is a tool that allows for the tracking of the evolution of a new idea or the process of solving
a problem. It allows the E-CAM developers to share and discuss proposals before and while implementing them.
It is extensively used during the certification of E-CAM software modules and recommended to all other E-CAM
projects.

It is also possible to keep Issues private, even for public projects. For instance, let’s assume you have a public project
but want to start a discussion on something you don’t want to be public. With Confidential Issues, you can discuss
private matters among the project members, and still keep your project public, open to collaboration.

2.3.1 Bug Tracking

Our bug tracking and general task management system revolves around the GitLab Issue Tracker service provided by
E-CAM. Issues can, however, have endless applications such as:

• Reporting bugs and malfunction

• Asking questions

• Obtaining support

• Submitting feature proposals

• Discussing the implementation of a new idea

• Elaborating new code implementations

https://docs.gitlab.com/ee/user/project/issues/
https://docs.gitlab.com/ee/user/project/issues/

E-CAM Deliverable 6.2 Page 8

3 Workflow Support

In addition to the publicly visible online services of Section 2, E-CAM will support and guide the workflow of the
E-CAM community through the provision of a continuous integration infrastructure.

The continuous integration (CI) infrastructure is provided via GitLabs own continuous integration infrastructure and
is hooked directly into the GitLab service (and is already being used for the GitLab Pages feature). The GitLab-CI
service is built on top of the open source components of Travis CI and provides similar capabilities in a tunable envi-
ronment:

• Multi-language: build scripts are command line driven and work with Java, PHP, Ruby, C, and any other language

• Stable: your builds run on a different machine than GitLab.

• Parallel builds: GitLab CI splits builds over multiple machines, for fast execution.

• Realtime logging: a link in the merge request takes you to the current build log that updates dynamically.

• Versioned tests: a .gitlab-ci.yml file that contains your tests, allowing everyone to contribute changes and en-
suring every branch gets the tests it needs.

• Pipeline: you can define multiple jobs per stage and you can trigger other builds.

• Autoscaling: you can automatically spin up and down VM’s to make sure your builds get processed immediately
and minimize costs.

• Continuous Delivery (CD): Continuous delivery and deployment are easy with multiple types of jobs, and secure
environmental variables.

3.1 The Recommended Workflow

For new repositories we would suggest the following:

• The recommended interface language to be used for libraries should be C. Creating bindings for other languages
from C is well documented and well supported, including for Fortran. Language bindings apart from Python
should probably be implemented as a separate repository, to allow for independent library development with-
out unnecessary overhead (as is now done for NetCDF, for example)

• Source code should be documented using Doxygen where appropriate, but other solutions may be more appro-
priate in some scenarios and all are supported by the GitLab Pages feature

• Source code should conform to the accepted style guides. For C/C++, the Google style guides and the cpplint
C/C++ style checker help automate conformance checking. For Python, Pylint is a comprehensive tool.

• Python bindings can be created by the use of SWIG. Automatic creation of the python binding documentation
is possible via doxy2swig

• Use the python bindings to create the testing infrastructure via pytest.

• Use CMake as the build tool

All of the necessary tools for the above will be supported by the CI infrastructure and templates will be provided for
how to implement the flow.

3.2 Automated Testing

The CI infrastructure will allow automated testing of pull requests to repositories. The potential scope of testing is up
to the end user but support for the following will be available:

• Style checks

• Build tests

• Unit tests

• Regression tests

• Documentation building

https://docs.gitlab.com/ee/user/project/pages/index.html
https://about.gitlab.com/gitlab-ci/
https://travis-ci.org/
http://www.unidata.ucar.edu/software/netcdf/
http://www.stack.nl/~dimitri/doxygen/
https://docs.gitlab.com/ee/user/project/pages/index.html
https://github.com/google/styleguide
https://github.com/google/styleguide/tree/gh-pages/cpplint
https://www.pylint.org/
http://www.swig.org/
https://github.com/m7thon/doxy2swig
http://pytest.org/latest/
https://cmake.org/

E-CAM Deliverable 6.2 Page 9

These tests (or a subset) can be performed on every pull request, and merging of pull requests could be contingent on
the tests passing.

E-CAM Deliverable 6.2 Page 10

References

Acronyms Used

CECAM Centre Européen de Calcul Atomique et Moléculaire

HPC High Performance Computing

ESDW Extended Software Development Workshop

WP Work Package

URLs referenced

Page ii
https://www.e-cam2020.eu . . . https://www.e-cam2020.eu
https://www.e-cam2020.eu/deliverables . . . https://www.e-cam2020.eu/deliverables
Internal Project Management Link . . . https://redmine.e-cam2020.eu/issues/1
a.ocais@fz-juelich.de . . . mailto:a.ocais@fz-juelich.de
http://creativecommons.org/licenses/by/4.0 . . . http://creativecommons.org/licenses/by/4.0

Page iii
Best Practices . . . http://scientific-software-best-practices.readthedocs.io/en/latest/
readthedocs.org . . . https://readthedocs.org/

Page 1
E-CAM GitLab service . . . https://gitlab.e-cam2020.eu/
Code review . . . https://about.gitlab.com/2017/03/17/demo-mastering-code-review-with-gitlab/
GitLab Issue Tracker . . . https://docs.gitlab.com/ee/user/project/issues/
GitLab CI . . . https://about.gitlab.com/features/gitlab-ci-cd/
OAuth2 . . . https://docs.gitlab.com/ce/api/oauth2.html
GitLab Pages . . . https://docs.gitlab.com/ee/user/project/pages/index.html
GitLab repository wikis . . . https://docs.gitlab.com/ce/user/project/wiki/index.html
Electronic Structure Library . . . http://esl.cecam.org/Main_Page
EasyBuild . . . http://easybuild.readthedocs.io/en/latest/

Page 2
E-CAM GitLab service . . . https://gitlab.e-cam2020.eu/
Deliverable 6.1 of WP6 of E-CAM . . . https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.
pdf
ESL . . . http://esl.cecam.org/Main_Page

Page 3
E-CAM GitLab service . . . https://gitlab.e-cam2020.eu/
E-CAM GitLab service . . . https://gitlab.e-cam2020.eu/
Code review . . . https://about.gitlab.com/2017/03/17/demo-mastering-code-review-with-gitlab/
GitLab Issue Tracker . . . https://docs.gitlab.com/ee/user/project/issues/
GitLab CI . . . https://about.gitlab.com/features/gitlab-ci-cd/
OAuth2 . . . https://docs.gitlab.com/ce/api/oauth2.html
GitLab Pages . . . https://docs.gitlab.com/ee/user/project/pages/index.html
GitLab repository wikis . . . https://docs.gitlab.com/ce/user/project/wiki/index.html
https://gitlab.e-cam2020.eu/explore/projects . . . https://gitlab.e-cam2020.eu/explore/projects

Page 4
Electronic Structure Library . . . http://esl.cecam.org/Main_Page
E-CAM . . . https://www.e-cam2020.eu/
MaX . . . http://www.max-centre.eu/
NOMAD . . . https://nomad-coe.eu/

Page 5
"Electronic Structure Infrastructure" . . . https://wordpress.elsi-interchange.org/
Deliverable 2.1 of WP2 . . . https://www.e-cam2020.eu/wp-content/uploads/2017/01/D2.1_311016.pdf
Virtual Institute for High-Productivity Supercomputing . . . http://www.vi-hps.org/
Scalasca . . . http://www.scalasca.org/

https://www.e-cam2020.eu
https://www.e-cam2020.eu/deliverables
https://redmine.e-cam2020.eu/issues/1
mailto:a.ocais@fz-juelich.de
http://creativecommons.org/licenses/by/4.0
http://scientific-software-best-practices.readthedocs.io/en/latest/
https://readthedocs.org/
https://gitlab.e-cam2020.eu/
https://about.gitlab.com/2017/03/17/demo-mastering-code-review-with-gitlab/
https://docs.gitlab.com/ee/user/project/issues/
https://about.gitlab.com/features/gitlab-ci-cd/
https://docs.gitlab.com/ce/api/oauth2.html
https://docs.gitlab.com/ee/user/project/pages/index.html
https://docs.gitlab.com/ce/user/project/wiki/index.html
http://esl.cecam.org/Main_Page
http://easybuild.readthedocs.io/en/latest/
https://gitlab.e-cam2020.eu/
https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
http://esl.cecam.org/Main_Page
https://gitlab.e-cam2020.eu/
https://gitlab.e-cam2020.eu/
https://about.gitlab.com/2017/03/17/demo-mastering-code-review-with-gitlab/
https://docs.gitlab.com/ee/user/project/issues/
https://about.gitlab.com/features/gitlab-ci-cd/
https://docs.gitlab.com/ce/api/oauth2.html
https://docs.gitlab.com/ee/user/project/pages/index.html
https://docs.gitlab.com/ce/user/project/wiki/index.html
https://gitlab.e-cam2020.eu/explore/projects
http://esl.cecam.org/Main_Page
https://www.e-cam2020.eu/
http://www.max-centre.eu/
https://nomad-coe.eu/
https://wordpress.elsi-interchange.org/
https://www.e-cam2020.eu/wp-content/uploads/2017/01/D2.1_311016.pdf
http://www.vi-hps.org/
http://www.scalasca.org/

E-CAM Deliverable 6.2 Page 11

Deliverable 6.1 of WP6 of E-CAM . . . https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.
pdf
Technical Guidelines . . . https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.
pdf
EasyBuild . . . http://easybuild.readthedocs.io/en/latest/
Eclipse . . . https://eclipse.org/ide/
Eclipse Marketplace . . . https://marketplace.eclipse.org/
Eclipse Parallel Tools Platform . . . http://www.eclipse.org/ptp/
NSight Eclipse Edition . . . https://developer.nvidia.com/nsight-eclipse-edition

Page 6
Doxygen . . . http://www.stack.nl/~dimitri/doxygen/
Ford . . . http://fortranwiki.org/fortran/show/FORD
Sphinx . . . http://www.sphinx-doc.org/en/stable/
GitLab Pages . . . https://docs.gitlab.com/ee/user/project/pages/index.html
Best Practices . . . http://scientific-software-best-practices.readthedocs.io/en/latest/
readthedocs.org . . . https://readthedocs.org/
readthedocs.org . . . https://readthedocs.org/
Read the Docs . . . https://readthedocs.org/
contribution guidelines to WP4 . . . http://e-cam-meso-and-multi-scale-modelling-modules.readthedocs.
io/en/latest/contributing.html
GitLab Pages . . . https://docs.gitlab.com/ee/user/project/pages/index.html
https://gitlab.com/pages . . . https://gitlab.com/pages
ReStructured Text . . . http://docutils.sourceforge.net/rst.html

Page 7
GitLab Issue Tracker . . . https://docs.gitlab.com/ee/user/project/issues/
GitLab Issue Tracker . . . https://docs.gitlab.com/ee/user/project/issues/

Page 8
GitLab Pages . . . https://docs.gitlab.com/ee/user/project/pages/index.html
GitLab-CI . . . https://about.gitlab.com/gitlab-ci/
Travis CI . . . https://travis-ci.org/
NetCDF . . . http://www.unidata.ucar.edu/software/netcdf/
Doxygen . . . http://www.stack.nl/~dimitri/doxygen/
GitLab Pages . . . https://docs.gitlab.com/ee/user/project/pages/index.html
Google style guides . . . https://github.com/google/styleguide
cpplint . . . https://github.com/google/styleguide/tree/gh-pages/cpplint
Pylint . . . https://www.pylint.org/
SWIG . . . http://www.swig.org/
doxy2swig . . . https://github.com/m7thon/doxy2swig
pytest . . . http://pytest.org/latest/
CMake . . . https://cmake.org/

Citations

https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
https://www.e-cam2020.eu/wp-content/uploads/2016/05/D6.1-Guidelines-for-web-1.pdf
http://easybuild.readthedocs.io/en/latest/
https://eclipse.org/ide/
https://marketplace.eclipse.org/
http://www.eclipse.org/ptp/
https://developer.nvidia.com/nsight-eclipse-edition
http://www.stack.nl/~dimitri/doxygen/
http://fortranwiki.org/fortran/show/FORD
http://www.sphinx-doc.org/en/stable/
https://docs.gitlab.com/ee/user/project/pages/index.html
http://scientific-software-best-practices.readthedocs.io/en/latest/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
http://e-cam-meso-and-multi-scale-modelling-modules.readthedocs.io/en/latest/contributing.html
http://e-cam-meso-and-multi-scale-modelling-modules.readthedocs.io/en/latest/contributing.html
https://docs.gitlab.com/ee/user/project/pages/index.html
https://gitlab.com/pages
http://docutils.sourceforge.net/rst.html
https://docs.gitlab.com/ee/user/project/issues/
https://docs.gitlab.com/ee/user/project/issues/
https://docs.gitlab.com/ee/user/project/pages/index.html
https://about.gitlab.com/gitlab-ci/
https://travis-ci.org/
http://www.unidata.ucar.edu/software/netcdf/
http://www.stack.nl/~dimitri/doxygen/
https://docs.gitlab.com/ee/user/project/pages/index.html
https://github.com/google/styleguide
https://github.com/google/styleguide/tree/gh-pages/cpplint
https://www.pylint.org/
http://www.swig.org/
https://github.com/m7thon/doxy2swig
http://pytest.org/latest/
https://cmake.org/

	Executive Summary
	Introduction
	Target Groups

	Software Development Tools
	Software Development
	Low-level Software
	Integrated Development Environment

	Software Documentation
	E-CAM Module Documentation
	Automated Extraction

	Software Maintenance
	Bug Tracking

	Workflow Support
	The Recommended Workflow
	Automated Testing

	References

