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Executive Summary

The purpose of the current document is to deliver a joint technical report on results of the initial porting and optimi-
sation of 8 new E-CAM modules to massively parallel machines and their benchmarking and scaling on a variety of
architectures.

We have done this for 1 module related to WP2, 5 modules from WP3 and 2 modules from WP4:

• for Electronic Structure: Libescdf,

• for Quantum Dynamics: PotMod, AuxMod, ClassMC, SodLib, ChebLib,

• for Meso- and Multi-scale Modelling: first GPU version of DL_MESO_DPD and the addition of bond forces to
the GPU version of DL_MESO_DPD.

In addition, we have looked at the scalability behaviour of a further 5 applications. These applications were considered
because of their potential for future cross-WP collaboration activities or their relevance to particular future E-CAM
activities. Where possible, inputs relevant to E-CAM were used for these applications (however, it should be noted
that specific use cases restrict us to strong-scaling analysis and therefore we also use cases that allow us to investigate
weak scalability).

The particular list of all relevant applications that were investigated were:

• for Classical Molecular Dynamics: GROMACS and LAMMPS,

• for Electronic Structure: Libescdf, Quantum ESPRESSO and CP2K,

• for Quantum Dynamics: PIM and Quantics,

• for Meso- and Multi-scale Modelling: Ludwig and DL_MESO_DPD.

The scaling behaviour of these applications on a variety of architectures available to E-CAM was investigated. These
architectures included Cray XC, Bluegene/Q and clusters systems (with Xeon Phi or GPU accelerators on various sys-
tems). These architectures cover the full spectrum of current production hardware available within PRACE.

A number of performance related issues arising from the E-CAM modules have been found. These issues include
scalability problems and, in the IO case of Libescdf, implementation problems. These have been raised with the
developers and have been targetted for resolution in time for the second deliverable in this series.

This deliverable also prescribes a workflow to ensure that, going forward, the porting effort is efficiently integrated
into the ESDW events and effectively communicated to the end-user community. This workflow includes

• creating reproducible and efficient software builds using EasyBuild,

• a benchmarking workflow using JUBE,

• application optimisation with Scalasca.

Elements of this workflow are already integrated into the current document. In particular, a large portion of the Porting
section is dedicated to correctly incorporating the applications into the EasyBuild framework (and making appropri-
ate changes to the EasyBuild application where necessary).

http://e-cam-electronic-structure-modules.readthedocs.io/en/latest/modules/escdf/readme.html
http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/PotMod/readme.html
http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/AuxMod/readme.html
http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/ClassMC/readme.html
http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/SODLIB/sod_readme.html
http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/cheb_doc/cheb_readme.html
https://gitlab.e-cam2020.eu/e-cam/Meso-Multi-Scale-Modelling-Modules/merge_requests/18/diffs
https://gitlab.e-cam2020.eu/e-cam/Meso-Multi-Scale-Modelling-Modules/merge_requests/19/diffs
https://gitlab.e-cam2020.eu/e-cam/Meso-Multi-Scale-Modelling-Modules/merge_requests/19/diffs
http://www.gromacs.org/
http://lammps.sandia.gov/
https://gitlab.e-cam2020.eu/esl/escdf
http://www.quantum-espresso.org
https://www.cp2k.org
https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/deliverables
http://stchem.bham.ac.uk/~quantics/doc/index.html
https://ccpforge.cse.rl.ac.uk/gf/project/ludwig/
http://www.scd.stfc.ac.uk/support/40694.aspx
https://gitlab.e-cam2020.eu/esl/escdf
http://easybuild.readthedocs.org/en/latest/
https://apps.fz-juelich.de/jsc/jube/jube2/docu/index.html
http://www.scalasca.org/
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1 Introduction

The original purpose of the current deliverable was to deliver a joint technical report on results of porting and opti-
misation of at least 8 new modules out of those developed in the Extended Software Development Workshop (ESDW)
events to massively parallel machines and the benchmarking and scaling of at least 8 new modules out of those de-
veloped in the ESDW events on a variety of architectures.

A number of relevant applications (with relevant use cases) are addressed in addition to the required 8 E-CAM mod-
ules.

All of the applications are ported to EasyBuild (the tool that delivers compiler/hardware portability for E-CAM appli-
cations) where the installation and dependency tree of the applications were optimised (described in Section 3). The
modules and applications were then benchmarked on the High Performance Computing (HPC) resources available to
the project and scaling plots were generated for a variety of systems and architectures (detailed in Section 4).

1.1 Distribution of modules and workflow

The initial set of ESDW events did not occur until month 9, with the first wrap-up event for an ESDW not taking place
until month 15. For this reason, the E-CAM modules referenced here from ESDW events are skewed in favour of the
initial events of WP2 and WP3 (which were the ones available in adequate time for the porting effort). WP4 is also
represented due to the GPU porting efforts of one of the programmers for the DL_MESO_DPD application.

Only WP1 is unrepresented in terms of the associated E-CAM modules, this is mainly because the target application
of that WP is OpenPathSampling (OPS), which is a Python application that wraps MD drivers. The incorporation
of new drivers into OPS was not scheduled until the second ESDW and so no performance relevant modules were
available.

We also target here applications that are expected to form a nexus of collaboration between various WPs. We attribute
then to the WP we consider most relevant.

Both the Software Manager and E-CAM programmers were hired only in the second half of the first year. The workflow
that has been created by them, which makes the ESDW module development part of the performance optimisation cy-
cle (described in Section 2), has only been conceived since that time. It has, therefore, not been applied to the first set
of ESDW events. As a result this workflow is only reflected in part in the results shown in the current deliverable.

http://easybuild.readthedocs.org/en/latest/
http://openpathsampling.org/latest/index.html
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2 Workflow

In this section we describe the workflow of the programming team which consists of the Software Manager (at partner
JSC) and the two programmers hired at partners STFC and CNRS. We also discuss the interplay between the services
that E-CAM can offer, the tools that are used and the applications of the E-CAM community.

The essential elements in the workflow are:

• reproducible and efficient software builds,

• benchmarking,

• optimisation.

As mentioned in Section 1, this workflow was conceived only after the initial ESDWs had taken place and have there-
fore only been applied in part to the modules related to these ESDWs.

2.1 Tools

Each element of the workflow involves a different tool. At each stage there are multiple choices of tools but we choose
within E-CAM to use only a single option (while maintaining awareness of other possibilities). When describing each
tool here we also describe the context of it’s use.

2.1.1 Software Builds - EasyBuild

In order for the information that we gather to be useful to our end user community, that community needs to be able to
easily reproduce a similarly optimised build of the software. EasyBuild is a software build and installation framework
that allows the management of (scientific) software on HPC systems in an efficient way. The main motivations for
using the tool within E-CAM are that:

• it provides a flexible framework for building/installing (scientific) software,

• it fully automates software builds,

• it allows for easily reproducing previous builds,

• it keeps the software build recipes/specifications simple and human-readable,

• it enables collaboration with the application developers and the wider HPC community,

• it provides an automated dependency resolution process.

EasyBuild currently supports cluster and Cray supercomputing systems, with limited support for BG/Q systems.

In our use case, we will produce and publish a build of the software under study with an open source toolset (GCC
compiler, OpenMPI MPI implementation, open source math libraries) for use by the community. This can be easily
modified for use on other supported architectures.

2.1.2 Benchmarking - JUBE

Automating benchmarks is important for reproducibility and hence comparability between builds of software, which
is the major goal. Furthermore, managing different combinations of parameters is error-prone and often results in
significant amounts of work especially if the parameter space becomes large.

In order to alleviate these problems JUBE helps to perform and analyse benchmarks in a systematic way. It allows the
creation of custom work flows that can be adapted to new architectures.

For each benchmark application the benchmark data is written out in a particular format that enables JUBE to deduce
the desired information. This data can be parsed by automatic pre- and post-processing scripts that draw information,
and store it more densely for manual interpretation.

The JUBE benchmarking environment provides a script based framework to easily create benchmark sets, run those
sets on different computer systems and evaluate the results.

We will use JUBE to provide a means for the community to evaluate the performance of their build of the software
under study.

http://easybuild.readthedocs.org/en/latest/
http://easybuild.readthedocs.org/en/latest/
https://apps.fz-juelich.de/jsc/jube/jube2/docu/index.html
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2.1.3 Optimisation - Scalasca

Figure 1: A Performance Optimisation Loop

Scalasca is a software tool that supports the performance optimisation of parallel programs by measuring and analyz-
ing their runtime behavior. The analysis identifies potential performance bottlenecks – in particular those concerning
communication and synchronization – and offers guidance in exploring their causes.

The Scalasca Trace Tools developed at the Jülich Supercomputing Centre are a collection of trace-based performance
analysis tools that have been specifically designed for use on large-scale systems such as the IBM Blue Gene series or
Cray XT and successors, but also suitable for smaller HPC platforms. While the current focus is on applications using
MPI, OpenMP, POSIX threads, or hybrid parallelization schemes, support for other parallel programming paradigms
may be added in the future. A distinctive feature of the Scalasca Trace Tools is its scalable automatic trace-analysis
component which provides the ability to identify wait states that occur, for example, as a result of unevenly distributed
workloads.

In addition to the main build using EasyBuild, we will provide an additional build recipe that provides an instrumented
version of the software application using SCORE-P. This instrumented executable can then be utilised together with
Scalasca to close a performance optimisation loop (see Fig. 1). End users can recycle this build recipe to create an
instrumented version of the application with any modifications they may have implemented. EasyBuild does not
currently have the technical capability to do this. This has been discussed with the EasyBuild developers and E-CAM
will begin the process of integrating this functionality during the next EasyBuild User Meeting.

No example cases of Scalasca usage are presented in the current report, but will form a core component of future
deliverables.

2.2 Interplay with ESDWs

As described in the ESDW guidelines (updated in Deliverable D5.2)2, it is expected that the applications to be used
in ESDW events are known 2 months in advance of the workshop. The programmers role in the months prior to the
ESDW is to gain some familiarity with these applications. The programmers will put in place a performance analysis
workflow for the applications using the tools described in Section 2.1.

During the ESDW, the programmers are there to provide instruction and support in the tools and assist the partic-
ipants where necessary. They can also leverage the performance analysis workflow that they have prepared to help
analyse the performance impact of the work undertaken during the ESDW (using the HPC resources to which E-CAM
has access).

2 DOI: 10.5281/zenodo.841731

http://www.scalasca.org/
http://www.vi-hps.org/projects/score-p/
https://github.com/hpcugent/easybuild/wiki/2nd-EasyBuild-User-Meeting
https://www.e-cam2020.eu/deliverables/
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3 Porting

This section covers the hardware resources available for Work Package (WP) 7 and some specifics of the porting effort
required on these architectures.

The HPC resources available to E-CAM to date have come from either Partnership for Advanced Computing in Europe
(PRACE) or one of the HPC partners of the project.

3.1 Available Resources

3.1.1 PRACE Resources

In the case of PRACE resources, there are two main avenues for access to resources. Each Centre of Excellence (CoE),
such as E-CAM, has been allocated 0.5% of the production resource budget of PRACE. The relevant time period for
this deliverable coincided with a transitional phase in PRACE and resources were only continuously available on one
cluster type system, i.e., MareNostrum3 (at Barcelona Supercomputing Centre), which also has Xeon Phi accelera-
tors.

The second avenue is the normal PRACE Preparatory Access Call process. E-CAM has been successful twice in acquir-
ing additional resources through this process, making an additonal 1.1M core hours available to the project.

We provide the complete list of supercomputers available through PRACE here (the configuration details of the hard-
ware are hyperlinked to the list)

• MareNostrum3 (Cluster with Xeon Phi accelerators, Spain)

• Hazel Hen (Cray XC40, Germany)

• JUQUEEN (BG/Q, Germany)

• Marconi (Cluster with Xeon Phi accelerators, Italy)

• SuperMUC (Cluster, Germany)

The only current-generation production HPC hardware missing from this collection are GPU accelerators, which are
provided by project partners in the resources of Subsection 3.1.2.

Since MareNostrum3 was repeatedly used in the applications included in this document (due to the fact that they
were the only PRACE resources available during the entire period of preparation of this deliverable), we will explicitly
mention that this supercomputer has 3,056 nodes of 2× Intel SandyBridge-EP E5-2670/1600 with 42 of them having
2× Intel Xeon Phi 5110P coprocessors.

3.1.2 Other Resources

A number of HPC sites are project partners and have generously made additional resources available, particularly in
the case where a particular HPC architecture component was not already available to the project.

• JURECA (cluster with GPU accelerators, through partner FZJ-JSC)

• Hartree Centre3 (through partner STFC)

• Poincare (cluster, through partner CNRS)

3.2 Porting Effort

As previously mentioned, only MareNostrum3 was available over the entire benchmarking period and it is on this
PRACE architecture that the majority of our results were obtained. Results for all other PRACE architectures are in-
cluded, though only for a subset of cases. The additional resources outlined in section 3.1.2 are considered testing
grounds and are typically not included unless they bring an architecture that is not included in PRACE systems, such
as the GPUs.

3The Hartree Center consists of several supercomputers, but mainly based on IBM Blue Wonder (Iden) and IBM Power8 (Panther) architectures.
Iden consists of 84 nodes of 2x Intel Ivy Bridge processors each + 42 Intel Xeon Phi 5110P coprocessors. The Panther machine is made of 32 Power
8335 nodes, each containing 2 x Power8 IBM processors + 4 Tesla K80 Nvidia cards.

http://www.prace-ri.eu/prace-preparatory-access/
https://www.bsc.es/innovation-and-services/supercomputers-and-facilities/marenostrum
http://www.hlrs.de/en/systems/cray-xc40-hazel-hen/
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Configuration/Configuration_node.html
http://www.cineca.it/en/content/marconi
https://www.lrz.de/services/compute/supermuc/systemdescription/
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/Configuration/Configuration_node.html;jsessionid=DFEDF689186F7E463728DBE6BF1BE02C
http://www.hartree.stfc.ac.uk/hartree/
https://groupes.renater.fr/wiki/poincare/public/description_de_poincare
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The porting effort was mainly restricted to configuring the application for the software stack of the target system. In
particular, the applications are incorporated into EasyBuild with the dependencies provided by it. This ensures that
knowledge gained during this process can be easily communicated to the wider community.

While Xeon Phi accelerators and GPUs were available, not all applications could take advantage of them. We include
in the discussion the subset of those that could benefit from them.

3.2.1 Porting EasyBuild to PRACE Systems

A number of systems restrict network access from the platform, making installation procedures that automatically
download sources non-functional. It was therefore necessary for E-CAM to further develop the installation procedure
of EasyBuild so that it could be done completely offline. This was carried out in a Pull Request4 to the main EasyBuild
GitHub repository: Offline EasyBuild bootstrap.

In addition, system administrators on HPC platforms are rightfully conservative in their approach to OS updates,
unfortunately this can mean that some system software can be extremely outdated as the platform approaches mid
to end-of-life (particularly for things like the Operating System (OS) version of Python supplied). To overcome the
restrictions this puts in place, E-CAM developed a script to bootstrap a modern Python2 release together with Lmod (a
more modern and actively maintained implementation of the module environment management tool) and EasyBuild.
This was done in the Pull Request "Bootstrap Python, EasyBuild and Lmod".

3.2.2 MPI Optimisation

The approach within EasyBuild is to control the entire software environment, taking as little as possible from the
host system. As part of our initial efforts to leverage EasyBuild, we therefore built the entire software stack ourselves
(starting with the compiler and the Message Passing Interface (MPI) implementation). Our use of our own MPI stack
led to initial scaling problems with our build of some of the applications. We were able to correct for this by configuring
MPI with the assistance of the hosting site (MareNostrum in this case).

Going forward, it is clear that any effort to build an MPI stack from source must be properly benchmarked and coordi-
nated with the hosting site so as to ensure the stack is appropriately tuned. It is also clear that having the hosting site
publish their configuration of the MPI stack is very valuable to those who would like to have this level of control.

An alternative that E-CAM created was to use EasyBuild to wrap the existing compiler and MPI installations into the
EasyBuild environment. This is not considered ideal as the installation is no longer considered strictly reproducible
with this approach. The implementation was carried out in two Pull Requests:

• Adding the intelligence to EasyBuild to recognise existing compilers and MPI implementations correctly (and
verify them): "Add more complete system compiler and system MPI support to EasyBuild"

• Add a flexible software stack that can wrap existing GCC and OpenMPI installations (a specific instance of the
capability introduced in the previous Pull Request): "OpenMPI vsystem, GCC vsystem"

3.2.3 Porting QuantumESPRESSO to EasyBuild

While initial support for QuantumESPRESSO already existed in EasyBuild, the implementation was not complete and
a number of Pull Requests were created to improve this:

• Generic support for a multi-threaded Fast Fourier Transform (FFT) library in EasyBuild itself: "Multi-threaded
FFT"

• Making the existing QuantumESPRESSO implementation aware of multi-threaded FFT: "Make QE easyblock
aware of multithreaded FFT"

• Correct handling of some of the gipaw module: "Handle gipaw correctly in QE"

• Support for the QuantumESPRESSO v6.0 within EasyBuild: "QuantumESPRESSO v6.0"

4Pull requests let you tell others about changes you’ve pushed to a GitHub repository. Once a pull request is sent, interested parties can review
the set of changes, discuss potential modifications, and even push follow-up commits if necessary.

https://yangsu.github.io/pull-request-tutorial/
https://github.com/easybuilders/easybuild-framework/pull/1880
https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
https://github.com/easybuilders/easybuild-framework/pull/1882
https://github.com/easybuilders/easybuild-easyblocks/pull/1106
https://github.com/easybuilders/easybuild-easyconfigs/pull/4136
https://github.com/easybuilders/easybuild-framework/pull/1802
https://github.com/easybuilders/easybuild-framework/pull/1802
https://github.com/easybuilders/easybuild-easyblocks/pull/954
https://github.com/easybuilders/easybuild-easyblocks/pull/954
https://github.com/easybuilders/easybuild-easyblocks/pull/1041
https://github.com/easybuilders/easybuild-easyconfigs/pull/3809
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3.2.4 Porting CP2K to EasyBuild

Again, initial support for CP2K already existed in EasyBuild, E-CAM implemented some tweaks to the installations
already available there through 2 Pull Requests.

• Generic support for a hybrid build of CP2K with an open source toolchain: "CP2K add psmp build support for
foss"

• Support for CP2K 4.1 with an open source toolchain: "CP2K v4.1"

3.2.5 Porting DL_MESO to the GPU

In order to accelerate the DL_MESO_DPD code on the latest and future exascale hardware, a first version for NVidia
GPU has been developed. This is only a starting point, it does not cover all the possible cases and it does not yet
support multiple GPUs. However, it represents an HPC milestone for the application, complementing the already
present parallel versions developed for shared and distributed memory (MPI/OpenMP).

In this version, the full computational workload is offloaded to the GPUs with the H_MAINLOOP call present in the
dlmesodpd.f90 file. In this way, the initialisation IO operation are left unaltered and fully compatible with the serial
version. A major change compared to the serial version is in the algorithm used to find the particle-particle interaction
forces: in order to guarantee better coalescent access for the CUDA-threads, the algorithm has been re-adapted to the
GPU architecture reordering the cell-linked list arrays.

Further details can be found in the Merge Request to the WP4 E-CAM repository: DL_MESO GPU implementa-
tion.

https://github.com/easybuilders/easybuild-easyblocks/pull/1043
https://github.com/easybuilders/easybuild-easyblocks/pull/1043
https://github.com/easybuilders/easybuild-easyconfigs/pull/3810
https://gitlab.e-cam2020.eu/e-cam/Meso-Multi-Scale-Modelling-Modules/merge_requests/18/diffs
https://gitlab.e-cam2020.eu/e-cam/Meso-Multi-Scale-Modelling-Modules/merge_requests/18/diffs
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4 Modules and Application Codes

For the modules and application codes that have been available and selected in the first year of the project, we provide
the following information on per-WP:

• Relevance to E-CAM.

• Benchmarks used.

• Results of our scaling analysis.

Hereafter we will indicate with cores the number of physical cores, to keep it distinguished from the logical cores (num-
ber of physical cores times the factor resulting from hyperthreading). As in most supercomputers, the hyperthreading
is switched off for the host processors, while it is active on the Intel Xeon Phi coprocessor (4 in this case).

Where possible, timing measurements are taken using internal timers available within the applications themselves. If
no such feature is available then the CPU time reported by the resource management system of the HPC resource is
used.

4.1 Classical Molecular Dynamics

Trajectory sampling (also called “path sampling”) is a family of methods for studying the thermodynamics and kinetics
rare events. In E-CAM Deliverable D1.15, we provided an overview of existing software for rare events, and found that
the software package OpenPathSampling (OPS) was the optimal choice for E-CAM development. OPS is an open-
source Python package for path sampling that wraps around other classical MD codes. In section 4.2 of D1.1, we
highlighted several areas where E-CAM could make useful contributions to OPS.

4.1.1 Relevance for E-CAM

Open Path Sampling (OPS) was the subject of the first ESDW in Classical Molecular Dynamics.The ESDW was held
from the 14th to the 25th of November 2016 in Traunkirchen, Austria. The ESDW focussed on making OPS feature
complete in order to make the first official release of the application. As such, there were no performance related
modules developed.

In light of this we instead benchmark two applications that are targets for inclusion as MD engines of OPS (scheduled
for the second WP1 ESDW in August 2017): LAMMPS and GROMACS. Since the MD engines perform the vast majority
of the computational work of OPS, the efficiency of these engines in the context of E-CAM inputs has a clear impact
on the scalability of OPS itself.

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or gaseous
state. It can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using a variety of
force fields and boundary conditions. It is open source and available on the LAMMPS website. The version used in
these benchmarks is the 17 Nov 2016 (LAMMPS release versions corresponds to the actual day of release).

GROMACS is a molecular dynamics package primarily designed for biomolecular systems such as proteins and lipids.
It is a free software and it is one of the most widely used codes in the field. The source code can be downloaded from
the GROMACS website.

4.1.2 Benchmarks and Scaling

For the LAMMPS code, the following two tests cases have been used for benchmarking:

• A mixture of water and surfactants for sustainable development in oil, gas, petrochemical and chemical process
industries has been chosen for benchmarking the code LAMMPS. The system contains around 83000 coarse
beads of 4 different constituents. Some of the beads are connected by harmonic bond and the degree of coarse
graining and the density of the system are determined using the model proposed by Warren and Groot 6.

• A Lennard-Jones fluid using ~2M particles.

5 DOI: 10.5281/zenodo.841694
6The Journal of Chemical Physics 107, 4423, 1997

https://www.e-cam2020.eu/wp-content/uploads/2017/01/D1.1_30112016.pdf 
http://openpathsampling.org/
http://lammps.sandia.gov/
http://www.gromacs.org/
http://lammps.sandia.gov/
http://www.gromacs.org/
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For the code GROMACS, the benchmark case used here is the Lysozyme case provided in the tutorial (see Gromacs
Lysozyme). It consists of ~12000 particles: a protein surrounded by water, which is representative of most real appli-
cations.

LAMMPS

Figure 2 shows the strong scaling results on the water and surfactants mixture run on the JURECA supercomputer.
The results indicates that good scaling is achieved up to 192 cores, with an efficiency within 70%. Since we are dealing
with a specific use case, the scalability is limited to strong-scaling which in turn is limited by the number of particles
in the system.
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Figure 2: LAMMPS code. Strong scaling for the water and surfactants mixture .

Figure 3 shows the strong scaling results obtained on MareNostrum3 for the Lennard-Jones fluid. The code scales well
up to 512 cores (efficiency within 94%) and then it quickly drops to 60% efficiency (larger test cases may have better
strong scaling results), i.e. scalability saturates from ~4000 particles per core.. Good scalability is also observed from
the weak scaling results (Figure 4) where a maximum of 147M particles have been used (36000 particles per core), the
dip at 2048 cores is unexplained and we did not have the run statistics to do further analysis.
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Figure 3: LAMMPS code. Strong scaling without I/O.
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Figure 4: LAMMPS code. Weak scaling without I/O.

Figure 5 shows the strong scaling with the same inputs on JUQUEEN (BG/Q, Germany). The code is shown to scale
extremely well up to 32768 cores and is already a member of the High-Q Club (codes that scale to the entire ma-
chine).

Figure 5: LAMMPS code on JUQUEEN. Strong scaling without I/O.

GROMACS

http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/lysozyme/
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/lysozyme/
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Configuration/Configuration_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html


E-CAM Deliverable 7.2 Page 10

GROMACS takes advantage of combined distributed and shared memory parallelism using different combinations
of libraries like MPI, OpenMP, thread-MPI, etc. In these tests, hybrid MPI/OpenMP solutions have been tested, us-
ing the GROMACS recommendations provided in their manual. GROMACS has the additional capability of making
suggestions on what the best combinations of MPI/OpenMP are based on the tests run (these appear in the output
logs), these suggestions were utilised in the scaling tests. A presentation on the runtime optimisaton of GROMACS is
available from the BioExcel CoE.
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Figure 6: GROMACS code strong scaling - MareNostrum3. Figure 7: GROMACS code strong scaling - Marconi.

Figure 6 shows the strong scaling results (without I/O) on MareNostrum3 and Figure 7 shows the same results for
Marconi. The effect on performance moving from intra-node (up to 16 cores, where OpenMP thread parallelism is
used) to across nodes (where MPI processes are used) is very clear.
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Figure 8: GROMACS code. Strong scaling with I/O

In Figure 8 we can see that the inclusion of I/O does not affect the performance of GROMACS. The I/O frequency for
this case has been set to every 100 time steps.

Finally, Figure 9 shows the results for the same test case running on GPUs (Tesla K80 from the Hartree Centre). The
code has been tested with up to 16 GPUs and shows very good relative efficiency given the hardware (within 60% of
ideal).
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Figure 9: GROMACS code. Strong scaling without I/O on Tesla K80 GPUs

http://bioexcel.eu/wp-content/uploads/2016/05/2016-05-11-Performance-Tuning-and-Optimization-of-GROMACS.pdf
http://bioexcel.eu/
https://www.bsc.es/innovation-and-services/supercomputers-and-facilities/marenostrum
http://www.cineca.it/en/content/marconi
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4.2 Electronic Structure

For WP2 we focus on three applications. The first is Libescdf, a library created to exchange electronic-structure-
related data in a platform-independent and efficient manner. It is based on the Electronic Structure Common Data
Format Specifications, as well as HDF5, and was finalised at the first E-CAM ESDW, We have also benchmarked two
community application codes: Quantum ESPRESSO and CP2K.

4.2.1 Relevance for E-CAM

In the Electronic Structure work package (WP2) the field is particularly well-developed with a number of heavily
utilised community codes (some of which, such as Quantum ESPRESSO and SIESTA, are already the subject mat-
ter of another CoE). Within E-CAM, the focus is more on extracting useful utilities from these applications so that they
can be leveraged by a wider range of applications.

In this first porting and benchmarking deliverable we focus on the IO performance of the Libescdf library that code
was finalised at the first WP2 ESDW in Zaragoza in June 2016. This library is an implementation referenced in a Psi-K
white paper entitled "Towards a Common Format for Computational Materials Science Data". The work relates to a
single E-CAM module:

• E-CAM module - Libescdf module.

We also note that another module from the same workshop (LibOMM) is the subject of a paper ([1]) where it’s scaling
behaviour to 9600 MPI tasks is shown.

We choose Quantum ESPRESSO as another application because it was targeted during the same ESDW for the extrac-
tion of some of the utilities used there (and scheduled for implementation in 2017). In particular there is interest in
extracting the two basic Kohn-Sham solvers used in the Quantum ESPRESSO codes, which require parallel linear al-
gebra routines, if parallel execution is desired, as well as parallel FFT routines. Initial discussion on how to implement
this extraction was carried out with Quantum ESPRESSO developers during the first ESDW.

In addition to the two required applications above, we also include CP2K which is a collaboration point between WP2
and WP3. CP2K is already implemented as a library and is targeted as the workhorse when more complex forces are
included in PIM (see Section 4.3).

4.2.2 Benchmarks and scaling

Libescdf

Libescdf is a library containing tools for reading and writing massive data structures related to electronic structure
calculations, following the standards defined in the Electronic Structure Common Data Format. It is a library created
to exchange electronic-structure-related data in a platform-independent and efficient manner. It is based on the
Electronic Structure Common Data Format Specifications, and is built upon HDF5.

We used Darshan 3.1.3 to evaluate the I/O performance of Libescdf on the JURECA system at JSC. The particular
example used is the one included in the source code.

NCPU Bandwidth Achieved Read/Write Ratio
96 7343 MiB/s 20
192 11989 MiB/s 39.2
384 22553 MiB/s 77.6

Table 1: I/O performance of the Libescdf library

From Table 1, we can see that the achieved bandwidth is scaling roughly linearly with the number of nodes (and is
expected to tail off as we approach the maximum bandwidth of the underlying filesystem). We halted the experiment
at 384 cores however as we noticed that the ratio of reads to writes from the library was scaling with the number of
nodes (which was made obvious from the poor wall-time scaling of the runs). One would expect the complete amount
of writing/reading of the example to remain constant regardless of the core count. This is true of the writing but the
amount of file reading is scaling with the core count. It would appear that there is a problem in the implementation
of the interface with HDF5 which is causing this issue.

This issue is also apparent when we look at the time spent by MPI I/O function for READ and WRITE, shown in Fig.10
compared to total time spent on I/O (the blue+violet lines). The real average time spent by MPI I/O functions rep-

https://gitlab.e-cam2020.eu/esl/escdf
http://esl.cecam.org/ESCDF_-_Electronic_Structure_Common_Data_Format
http://esl.cecam.org/ESCDF_-_Electronic_Structure_Common_Data_Format
http://www.quantum-espresso.org
https://www.cp2k.org
https://gitlab.e-cam2020.eu/esl/escdf
http://psi-k.net/download/highlights/Highlight_131.pdf
http://e-cam-electronic-structure-modules.readthedocs.io/en/latest/modules/escdf/readme.html
https://gitlab.e-cam2020.eu/ESL/omm/tree/master
https://www.cp2k.org
https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/deliverables
https://gitlab.e-cam2020.eu/esl/escdf/tree/master
http://esl.cecam.org/ESCDF_-_Electronic_Structure_Common_Data_Format
https://support.hdfgroup.org/HDF5/
http://www.mcs.anl.gov/research/projects/darshan/publications/
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resent only a very small portion of the overall file access times. The imbalance of read/write is very clear from this
picture.

An issue for these performance problems has been raised with the Libescdf developers and performance analysis with
Scalasca is ongoing.

Figure 10: Timespan of code running with 384 cores, comparison with real average MPI I/O time

Quantum ESPRESSO code

Quantum ESPRESSO is an integrated suite of open-source computer codes for electronic-structure calculations and
materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials.
We used the 6.0 version released October 04, 2016 which can be downloaded from the Quantum ESPRESSO web-
site.

EasyBuild is used to install a hybrid version (MPI+OpenMP) of Quantum ESPRESSO by using its foss toolchain (GCC
5.4.0, OpenMPI 1.10.3, OpenBLAS 0.2.18, LAPACK 3.6.1, ScaLAPACK 2.0.2, FFTW 3.3.4,). In Quantum ESPRESSO, sev-
eral MPI parallelization levels are implemented, in which both calculations and data structures are distributed across
processors. Processors are organized in a hierarchy of groups. To control the number of processors in each group,
command line switches (-nimage, -npools, -nband, -ntg, -ndiag) are used. The Kohn-Sham orbitals (also
called bands) parallelization -nbands is set to 1 since its implementation is still experimental and sometimes gives
even slightly worse scalability in our small scale tests. The -ntg is set for good parallelization of the 3D FFT across
processors. Within a self consistent iteration, the calculation of K points is separated into several groups -nk. Differ-
ent -nk values have a large influence on code performance, the same inputs are thus tested with different -nk values.
The number of OpenMP threads is set to 1 or 2 for this hybrid version.

Two benchmark cases are used. Inputs can be downloaded from small-scale test 2 with k-points setting 333 instead of
222 and large-scale DEISA benchmark from the Quantum ESPRESSO website.

The small scale input is a super-cell composed of 64 atoms of Fe with 384 electrons and 8 irreducible k-points. Con-
vergence is set to conv_thr=1.0D-8.

The large scale input is a Thiol-covered gold surface and water, 4 k-points, 587 atoms, 2552 electrons. Convergence is
set to conv_thr=1.0D-8.

Figure 11 shows then strong scaling results on MareNostrum3 with NUM_THREAD_OMP=1. It can be clearly seen that the
effect of the -nk is very important. When set to 8, it doubles the performance and scaled to 512 cores compared to the
results obtained by setting nk=1. We can also see that, by increasing the number of cores by a factor of 32, the speed
up is only a factor of 5. The scalability for small scale inputs is thus relatively poor.

Figure 12 shows then strong scaling results on MareNostrum3 with NUM_THREAD_OMP=1. -nk is set to 4. The code
scales well compared to the benchmark line given by CRAY-XT4. NUM_THREAD_OMP=2 slightly improves the perfor-
mance when using 128 and 256 cores.

In Figure 13, we can see that the use of more than 1024 cores with the Quantum ESPRESSO code (for this case) either
didn’t work (in the case of the EasyBuild OpenMPI installation at 4096 cores) or scaled poorly on SuperMUC (Cluster,
Germany). A possible further optimisation of the OpenMPI installation may be needed when using the EasyBuild in-
stall procedure on the MareNostrum architecture (or one may resort to the solution described in Section 3.2.2).

A comparison between the scaling tests done with Quantum ESPRESSO installed by EasyBuild and the one installed
with standard procedure is also shown in Fig. 14. The standard installation version uses intel 13.0.1, MKL 11.0.1,
openmpi 1.8.1 and ScaLAPACK 2.0.2. The relative performance levels are close up to 512 cores, while the EasyBuild

http://www.qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseBrowse&frs_package_id=18
http://www.qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseBrowse&frs_package_id=18
http://qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseView&release_id=43
http://qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseView&release_id=46
http://www.quantum-espresso.org/benchmarks/
https://www.lrz.de/services/compute/supermuc/systemdescription/
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Figure 11: Quantum ESPRESSO code. Strong scaling test
with small problem size. Speed-up of nk=8 is relative to
nk=1
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Figure 12: Quantum ESPRESSO code. Strong scaling test
with large problem size.

Figure 13: Quantum ESPRESSO code. Strong scaling test with large problem size and large node count (on MareNos-
trum3 and SuperMUC).

version had much better scalability for the test when using Ncore=1024. In the EasyBuild case, we are using a different
compiler, optimisations, MPI version (1.10.4) and math libraries; and the Quantum Espresso dependencies are tuned
externally to the package itself.

CP2K code

CP2K is a quantum chemistry and solid state physics software package that can perform atomistic simulations of
solid state, liquid, molecular, material, crystal, and biological systems under periodic boundary conditions. CP2K
provides a general framework for different modeling methods such as Density Functional Theory (DFT) using the
mixed Gaussian and plane waves approaches GPW and GAPW. CP2K can do simulations of molecular dynamics,
metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational analysis, core level spectroscopy, energy minimization,
and transition state optimization using Nudged Elastic Band (NEB) or dimer method. We used its 4.1 version released
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Figure 14: Quantum ESPRESSO code. Comparison between Easybuild installed version and Standard version.

October 05, 2016 which can be downloaded from the SourceForge website.

EasyBuild is used to install a hybrid version (MPI/OpenMP) of CP2K, again using its foss toolchain. The entire CP2K
code is MPI parallelized. Some additional loops are also OpenMP parallelized. As advised on the CP2K website, we
first take advantage of the MPI parallelization. However, given that running one MPI-rank per CPU-core will probably
lead to memory shortages, the usage of OpenMP is sometimes needed, particularly for large structures and larger
numbers of cores.

Two benchmark cases are used. Inputs can be downloaded from CP2K Benchmark Suite Section. The small scale and
standard DFT case named "H2O-64" is an ab-initio molecular dynamics of liquid water using Quickstep DFT. Local
Density Approximation (LDA) is used. The system contains 64 water molecules (192 atoms, 512 electrons) in a 12.4 Å3

cell. The large scale and linear-scaling DFT case named "H2O-DFT-LS" is a single-point energy calculation. It consists
of 6144 atoms in a 39 Å3 box (2048 water molecules in total). The linear scaling cost results from the fact that the
algorithm is based on an iteration on the density matrix. The cubically-scaling orthogonalisation step of standard
Quickstep DFT is avoided when using the orbital transformation method.
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Figure 15: CP2K code. Strong scaling test.

Figure 15 shows then strong scaling results on MareNostrum3 with NUM_THREAD_OMP=1. It can be clearly seen that
the version installed with the packaged Makefile gives a similar performance to the CP2K benchmark on HECToR

https://sourceforge.net/projects/cp2k/files/
https://www.cp2k.org/performance
https://www.cp2k.org/performance:hector-h2o-64
https://www.cp2k.org/performance:hector-h2o-64
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machine. Beyond 16 cores (1 node), the CP2K version installed by EasyBuild scales poorly. This may be related to a
possible optimisation problem of OpenMPI installed by EasyBuild that we discovered during the Quantum ESPRESSO
tests.
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Figure 16: CP2K code. Strong scaling test (MareNostrum).

Figure 17: CP2K code. Strong scaling test (HazelHen).

Figure 16 shows then strong scaling results on MareNostrum3 with NUM_THREAD_OMP=1 (except for the EasyBuild
CP2K version running on 4096 cores where 8 threads were used in this case). The results show that the EasyBuild CP2K
version exhibits excellent scalability for linear-scaling DFT calculation when an appropriate thread number is chosen.
The EasyBuild CP2K version is two times faster than the standard version ("Makefile CP2K" line in blue) in term of
linear-scaling DFT calculation. Higher core counts are shown for Hazel Hen (Cray XC40, Germany), a platform similar
to the reference platform of the benchmark. Here we can see excellent scaling properties for CP2K, likely attributable
to the predictability of the software environment of the platform, and the increased possibility, therefore, of targeted
optimisation for the platform.

Since the tests on 4096 cores worked well with the EasyBuild installed OpenMPI version, the OpenMPI optimisation
problem may be related to the cubically-scaling matrix orthogonalisation component of the benchmark.

4.3 Quantum Dynamics

Uniquely in the Quantum Dynamics (WP3) package, there are no well-established community codes. In the ESDW
organized in June 2016, either new application codes or parallel implementations of existing codes were developed.
We have tested the following codes that were targetted there: PIM and Quantics.

4.3.1 Relevance for E-CAM

Both of the applications addressed were subjects of the first ESDW and are likely to feature again in the second WP3
ESDW. The content included here are evaluations of the parallelisation efforts at the initial WP3 ESDW.

There are 5 E-CAM modules related to the work in this section, all of which have been described in detail in Deliverable
3.1.

For PIM, the relevant E-CAM modules are:

• E-CAM module - PotMod,

• E-CAM module - AuxMod,

• E-CAM module - ClassMC (particularly relevant).

For Quantics, the relevant modules are:

• E-CAM module - SodLib,

• E-CAM module - ChebLib.

https://www.cp2k.org/performance:hector-h2o-64
https://www.cp2k.org/performance:hector-h2o-64
http://www.hlrs.de/en/systems/cray-xc40-hazel-hen/
https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/deliverables
http://stchem.bham.ac.uk/~quantics/doc/index.html
https://www.e-cam2020.eu/wp-content/uploads/2017/01/D3.1_29122016.pdf
https://www.e-cam2020.eu/wp-content/uploads/2017/01/D3.1_29122016.pdf
http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/PotMod/readme.html
http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/AuxMod/readme.html
http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/ClassMC/readme.html
http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/SODLIB/sod_readme.html
http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/cheb_doc/cheb_readme.html
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4.3.2 Benchmarks and scaling

PIM code

The PIM code is an application which performs exact sampling of the Wigner density using the PIM method. It pro-
vides quantum initial conditions for the approximate calculation of the time correlation functions. The code is still
under development.

The PIM code (Version 5 Dec, 2016) is installed with the EasyBuild free and open source software (foss) toolchain. The
CH5+ molecule with classical sampling method is used as input. In the MCINPUT file, NDump is set to 2000, NBlock is
set to the number of cores. NTraj, the number of molecular dynamics trajectories, is set to 5000.
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Figure 18: PIM code. Strong scaling test.

Figure 18 shows the strong scaling results on MareNostrum3 from 1 to 4096 cores. The results show that the PIM code
scales linearly up to 1024 cores and then begins to tail off rapidly.

NCPU Total CPU Time Wall time
1024 1 1
2048 1.001949422 0.683671099
4096 0.9989863155 0.5302435568

Table 2: Scalability Results on JUQUEEN. CPU times (total time spent computing) and wall times have been nor-
malised with respect to the value for 1024 CPUs

We see similar results on JUQUEEN in Table 2 with increasingly poor scalability as we move to 4096 cores. The output
printed by PIM is done on a per CPU basis and in the 4096 core case runs to some 80K lines. This is excessive and
reducing this is likely to have a large performance impact.

PIM is a target application in the second WP3 ESDW and further optimisation work will be carried out there (analysis
with Scalasca, initial implementation of OpenMP parallelism).

Quantics code

The QUANTICS package solves the time-dependent Schrödinger equation to simulate nuclear motion by propagating
wavepackets. The focus of the package is the Multi-Configurational Time-Dependent Hartree (MCTDH) algorithm.
The package grew out of the Heidelberg MCTDH Package. Compared to the older MCTDH packages, the main changes
in QUANTICS are the addition of the G-MCTDH algorithm and the direct dynamics DD-vMCG method. The code is
now Fortran 90 based with full dynamical allocation of memory. Parallelisation using OpenMP and MPI is made in
many parts of the code.

The Quantics code version is 1.1, shared with E-CAM by Professor Gramham Worth. The EasyBuild foss toolchain is
used for the MPI version installation of Quantics. "Pyrazine, 24 modes" is used as input.

Figure 19 shows strong scaling results on MareNostrum3 from 1 to 16 cores. The results show that the QUANTICS code
scales relatively poorly. The application of more than 16 cores turned out to be unsuccessful, as the code stopped after
the first dynamic step. Indeed, the code has not yet been enabled by the developers to run on more than 16 cores and
has never been tested on this number of cores before. Code development is still ongoing, rendering Quantics a good
candidate for further optimisation.

https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/deliverables
https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/deliverables/tests/ch5/CLASSICAL
http://s3.amazonaws.com/academia.edu.documents/42176548/Molecular_dynamics_of_pyrazine_after_exc20160205-14144-1dvyozm.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1481299492&Signature=jcqyAKnKnchf9RBk8jYerPMJ%2B2s%3D&response-content-disposition=inline%3B%20filename%3DMolecular_dynamics_of_pyrazine_after_exc.pdf
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Figure 19: QUANTICS code. Strong scaling test.

4.4 Meso- and Multi-scale Modelling

In the Meso- and Multi-scale modelling (WP4) package the codes tested are: Ludwig and DL_MESO_DPD.

DL_MESO_DPD is a meso scale code based on the Dissipative Particle Dynamics method, an off-lattice, discrete par-
ticle method for modelling mesoscopic systems. It has little in common with Lattice Boltzmann methods, except in
its application to systems of similar length and time scales. The code has been developed at Daresbury Laboratory
and it can be downloaded at the DL_MESO project website. The version used is 2.6 (part of the DL_MESO v2.6 pack-
age).

Ludwig is a Lattice Boltzmann code used for the simulation of complex fluids. It is open source and available from the
Ludwig svn repository. The version tested is 0.4.6.

4.4.1 Relevance for E-CAM

The first WP4 ESDW is scheduled for 2017, combining this with late hires of the relevant PDRAs leaves restricted scope
for inclusion of modules generated by the WP.

DL_MESO_DPD is developed at one of the E-CAM partners, STFC, which also hosts the E-CAM programmer with
expertise in GPU programming. It has been selected for porting to GPU accelerators. Accurate comparison of CPU
and GPU targets requires prior knowledge of the scalability of DL_MESO_DPD. We include results here for both the
current (at the time of writing) CPU implementation of DL_MESO_DPD (in Fortran) as well as some initial results for
the results of the GPU porting effort (in C++). There are 2 E-CAM modules that are relevant to this work:

• E-CAM module - First GPU version of DL_MESO_DPD

• E-CAM module - Add bond forces to the GPU version of DL_MESO_DPD

The Barcelona team has been involved in the development of new modules within Ludwig. Specifically, it has gener-
alized colloidal features and have included metabolic processes in a hybrid, continuum model which merges lattice
Boltzmann with a continuum description of the microorganism populations. Ludwig is also considered a potential
collaboration point between WP1 and WP4, with it’s possible inclusion as an engine within OpenPathSampling.

4.4.2 Benchmarks and scaling

DL_MESO_DPD code

For the code DL_MESO the following two cases have been used:

• This system is a solution of 10% SDS (Sodium Dodecyl Sulfate) in water. SDS is an anionic surfactant and is
used as an ingredient in many detergents. The system size is of the order of industrially relevant cases (~200k
particles).

• Mixture of ~0.5M particles, not charged. It consists of 0.5M particles of two different species in a cubic box with
periodic boundary conditions in all directions.

https://ccpforge.cse.rl.ac.uk/gf/project/ludwig/
http://www.scd.stfc.ac.uk/support/40694.aspx
http://www.scd.stfc.ac.uk/support/40694.aspx
https://ccpforge.cse.rl.ac.uk/gf/project/ludwig/scmsvn/?action=AccessInfo
https://gitlab.e-cam2020.eu/e-cam/Meso-Multi-Scale-Modelling-Modules/merge_requests/18/diffs
https://gitlab.e-cam2020.eu/e-cam/Meso-Multi-Scale-Modelling-Modules/merge_requests/19/diffs
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The source code is compiled using the Intel Compiler 13.0.1 and Intel impi 4.1.3.049 library. Moreover, for the chosen
benchmark case the best performance has been obtained using MPI processes only, despite a hybrid MPI/OpenMP
version being provided. The only flags used are: -O3 and -mmic (for the Xeon Phi version).

Figure 20 shows the strong scaling on the watersurfactant mixture of 200k beads. The code scales efficiently (within
%70) up to 1536 cores and then drops rapidly.
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Figure 20: DL_MESO_DPD code. Strong scaling for the WaterSurfactant mixture

Figure 21 shows the strong scaling results obtained on MareNostrum3. The code scales well up to 256 cores (efficiency
within 75%) and then it drastically loses performance, probably due to the increasing communication time. This is
also confirmed from the weak scaling analysis where the time per cycle increases rapidly after 64 cores (see Figure
22).
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Figure 21: DL_MESO_DPD code. Strong scaling without
I/O

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

1 2 4 8 16 32 64 128 256 512

ti
m

e
 p

e
r 

cy
cl

e
 [

s]

# cores

DL_MESO_DPD

Ideal

Figure 22: DL_MESO_DPD code. Weak scaling without I/O
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Figure 23: DL_MESO_DPD code. Strong scaling with I/O
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Figure 24: DL_MESO_DPD code. Strong scaling on the
Xeon Phi (KNC) without I/O.

The effect of the I/O operation can be observed in Figure 23. The output frequency is every 10 time steps. The code
scales well up to 512 cores in this case but the overall impact of the I/O operations is very significant, again show-
ing the possible scope for I/O related optimisation (once possible explanations relating to network saturation are
excluded).
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In Figure 24 are shown the results on the Xeon Phi card in native mode. The performance is very slow compared to the
Xeon processor, however strongly super linear, which indicates a very poor use of the Xeon Phi hardware.

Finally, the GPU version of the DL_MESO has been tested using the second input presented above. Below is a table
about the performance on different GPU cards compared to the serial version on a single core:

CPU or GPU card compute capability time per cycle [s] speedup
————————————— ———————– ———————– —————

Intel Ivy Bridge E5-2697v2 none 0.4740 1.0
NVidia Tesla C1060 1.3 0.2280 2.1
NVidia Tesla C2075 2.0 0.1830 2.6

NVidia Tesla K40 3.5 0.1011 4.7
NVidia Tesla K80 3.7 0.0898 5.3
NVidia Tesla M60 5.2 0.0978 4.8
NVidia Tesla P100 6.0 0.0390 12.2

Preliminary results are encouraging, but still far from the expected performance (especially using the latest P100
card).

Ludwig code

The benchmark case chosen for the Ludwig code is a Poiseuille flow. For strong scaling tests we use a lattice consisting
of 1283 points, equally distributed along each direction. The results are shown in terms of time spent per cycle, which
allows comparisons between them to be made. The source code is compiled using the Intel Compiler 13.0.1 and Intel
impi 4.1.3.049 library. The only flags used are: -O3, -DNDEBUG, and -mmic (for the Xeon Phi version).
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Figure 25: Ludwig code. Strong scaling without I/O. Figure 26: Ludwig code. Weak scaling without I/O.

Strong scaling results are presented in Figure 25. The code scales well (within 75%) up to 512 cores and within 60% up
to 4096 cores. A slight variation in the scaling after 4 cores can be observed.

The Figure 26 shows the weak scaling results using a ratio Np /Nc = 8, where Np is the total size of the system and Nc

is the number of cores. The plot has no clear trend, but overall it keeps below the ideal value obtained with 1 core
only.
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Figure 27: Ludwig code. Strong scaling with I/O.

The effect of the I/O operations have been tested using the same configuration of the strong scaling test, but dumping
the output files at a frequency of every 100 time steps. Figure 27 shows that above 64 cores the efficiency drops to
a value lower than 75% and quickly degenerates afterwords. This indicates that the effect of the I/O operation is
very strong and becomes predominant very rapidly. This makes Ludwig a good candidate for an I/O optimisation
effort.
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Xeon Phi 0 Xeon Phi 1 Total Cores
1 0 1
2 0 2
4 0 4
8 0 8

16 0 16
32 0 32
32 32 64
64 64 128

128 128 256

Table 3: Ludwig code. Split of the logical cores
between the Xeon Phi cards on the same node.
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Figure 28: Ludwig code. Strong scaling on Xeon Phi (KNC)
without I/O

Finally, Figure 28 presents the results running the code on the Xeon Phi coprocessor (KNC) in native mode. Each node
of Mare Nostrum contains 2 Xeon Phi card (mic-0 and mic-1). The split of the logical cores used across the two cards is
done according to the Table 3. The results show that the scaling is very efficient up to 32 logical cores and then quickly
drops to 65%.



E-CAM Deliverable 7.2 Page 21

5 Outlook

Going forward WP 7 will focus more on the development efforts directly taking place with ESDW events using the
workflow described in this document.

For the particular applications discussed in this deliverable, there are a number of performance related iddues to be
addressed in the second set of ESDWs.

We would ultimately like to document the results included here on the E-CAM website. Prior to doing this we would
like to engage the relevant developers to make them aware of our results and seek any further guidance to improve
them (in a number of cases this has already happened).
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pull/1043
CP2K v4.1 . . . https://github.com/easybuilders/easybuild-easyconfigs/pull/3810
DL_MESO GPU implementation . . . https://gitlab.e-cam2020.eu/e-cam/Meso-Multi-Scale-Modelling-Modules/
merge_requests/18/diffs
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https://yangsu.github.io/pull-request-tutorial/
https://github.com/easybuilders/easybuild-framework/pull/1880
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E-CAM Deliverable D1.1 . . . https://www.e-cam2020.eu/wp-content/uploads/2017/01/D1.1_30112016.
pdf
OpenPathSampling . . . http://openpathsampling.org/
LAMMPS . . . http://lammps.sandia.gov/
GROMACS . . . http://www.gromacs.org/
LAMMPS website . . . http://lammps.sandia.gov/
GROMACS website . . . http://www.gromacs.org/
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Gromacs Lysozyme . . . http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/
lysozyme/
JUQUEEN . . . http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Configuration/
Configuration_node.html
High-Q Club . . . http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html
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presentation on the runtime optimisaton of GROMACS . . . http://bioexcel.eu/wp-content/uploads/2016/
05/2016-05-11-Performance-Tuning-and-Optimization-of-GROMACS.pdf
BioExcel CoE . . . http://bioexcel.eu/
MareNostrum3 . . . https://www.bsc.es/innovation-and-services/supercomputers-and-facilities/
marenostrum
Marconi . . . http://www.cineca.it/en/content/marconi
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Libescdf . . . https://gitlab.e-cam2020.eu/esl/escdf
Electronic Structure Common Data Format Specifications . . . http://esl.cecam.org/ESCDF_-_Electronic_
Structure_Common_Data_Format
Quantum ESPRESSO . . . http://www.quantum-espresso.org
CP2K . . . https://www.cp2k.org
Libescdf . . . https://gitlab.e-cam2020.eu/esl/escdf
Towards a Common Format for Computational Materials Science Data . . . http://psi-k.net/download/
highlights/Highlight_131.pdf
Libescdf module . . . http://e-cam-electronic-structure-modules.readthedocs.io/en/latest/modules/
escdf/readme.html
LibOMM . . . https://gitlab.e-cam2020.eu/ESL/omm/tree/master
CP2K . . . https://www.cp2k.org
PIM . . . https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/deliverables
Libescdf . . . https://gitlab.e-cam2020.eu/esl/escdf/tree/master
Electronic Structure Common Data Format . . . http://esl.cecam.org/ESCDF_-_Electronic_Structure_
Common_Data_Format
HDF5 . . . https://support.hdfgroup.org/HDF5/
Darshan 3.1.3 . . . http://www.mcs.anl.gov/research/projects/darshan/publications/
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Quantum ESPRESSO website . . . http://www.qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseBrowse&
frs_package_id=18
small-scale test 2 . . . http://qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseView&release_
id=43
large-scale DEISA benchmark . . . http://qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseView&
release_id=46
benchmark line given by CRAY-XT4 . . . http://www.quantum-espresso.org/benchmarks/
SuperMUC . . . https://www.lrz.de/services/compute/supermuc/systemdescription/

Page 14
SourceForge website . . . https://sourceforge.net/projects/cp2k/files/
CP2K Benchmark Suite Section . . . https://www.cp2k.org/performance
CP2K benchmark on HECToR machine . . . https://www.cp2k.org/performance:hector-h2o-64
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Hazel Hen . . . http://www.hlrs.de/en/systems/cray-xc40-hazel-hen/
PIM . . . https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/deliverables
Quantics . . . http://stchem.bham.ac.uk/~quantics/doc/index.html
Deliverable 3.1 . . . https://www.e-cam2020.eu/wp-content/uploads/2017/01/D3.1_29122016.pdf
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PotMod . . . http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/PotMod/
readme.html
AuxMod . . . http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/AuxMod/
readme.html
ClassMC . . . http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/ClassMC/
readme.html
SodLib . . . http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/SODLIB/
sod_readme.html
ChebLib . . . http://e-cam-quantum-dynamics-modules.readthedocs.io/en/latest/modules/cheb_doc/
cheb_readme.html

Page 16
PIM code . . . https://gitlab.e-cam2020.eu/Quantum-Dynamics/PIM/tree/deliverables
CH5+ molecule with classical sampling method . . . https://gitlab.e-cam2020.eu/Quantum-Dynamics/
PIM/tree/deliverables/tests/ch5/CLASSICAL
"Pyrazine, 24 modes" . . . http://s3.amazonaws.com/academia.edu.documents/42176548/Molecular_dynamics_
of_pyrazine_after_exc20160205-14144-1dvyozm.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=
1481299492&Signature=jcqyAKnKnchf9RBk8jYerPMJ%2B2s%3D&response-content-disposition=inline%
3B%20filename%3DMolecular_dynamics_of_pyrazine_after_exc.pdf

Page 17
Ludwig . . . https://ccpforge.cse.rl.ac.uk/gf/project/ludwig/
DL_MESO_DPD . . . http://www.scd.stfc.ac.uk/support/40694.aspx
DL_MESO project website . . . http://www.scd.stfc.ac.uk/support/40694.aspx
Ludwig svn repository . . . https://ccpforge.cse.rl.ac.uk/gf/project/ludwig/scmsvn/?action=AccessInfo
First GPU version of DL_MESO_DPD . . . https://gitlab.e-cam2020.eu/e-cam/Meso-Multi-Scale-Modelling-Modules/
merge_requests/18/diffs
Add bond forces to the GPU version of DL_MESO_DPD . . . https://gitlab.e-cam2020.eu/e-cam/Meso-Multi-Scale-Modelling-Modules/
merge_requests/19/diffs
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